Evidence for Retromutagenesis as a Mechanism for Adaptive Mutation in Escherichia coli.

Bibliographic Details
Title: Evidence for Retromutagenesis as a Mechanism for Adaptive Mutation in Escherichia coli.
Authors: Morreall, Jordan1,2 medpwd@emory.edu, Kim, Alice1, Liu, Yuan3, Degtyareva, Natalya1, Weiss, Bernard4, Doetsch, Paul W.1,5,6,7
Source: PLoS Genetics. 8/25/2015, Vol. 11 Issue 8, p1-12. 12p.
Subject Terms: *ESCHERICHIA coli mutation, *MUTAGENESIS, *BACTERIAL mutation, *SINGLE-stranded DNA, *DEAMINATION
Abstract: Adaptive mutation refers to the continuous outgrowth of new mutants from a non-dividing cell population during selection, in apparent violation of the neo-Darwinian principle that mutation precedes selection. One explanation is that of retromutagenesis, in which a DNA lesion causes a transcriptional mutation that yields a mutant protein, allowing escape from selection. This enables a round of DNA replication that establishes heritability. Because the model requires that gene expression precedes DNA replication, it predicts that during selection, new mutants will arise from damage only to the transcribed DNA strand. As a test, we used a lacZ amber mutant of Escherichia coli that can revert by nitrous acid-induced deamination of adenine residues on either strand of the TAG stop codon, each causing different DNA mutations. When stationary-phase, mutagenized cells were grown in rich broth before being plated on lactose-selective media, only non-transcribed strand mutations appeared in the revertants. This result was consistent with the known high sensitivity to deamination of the single-stranded DNA in a transcription bubble, and it provided an important control because it demonstrated that the genetic system we would use to detect transcribed-strand mutations could also detect a bias toward the non-transcribed strand. When residual lacZ transcription was blocked beforehand by catabolite repression, both strands were mutated about equally, but if revertants were selected immediately after nitrous acid exposure, transcribed-strand mutations predominated among the revertants, implicating retromutagenesis as the mechanism. This result was not affected by gene orientation. Retromutagenesis is apt to be a universal method of evolutionary adaptation, which enables the emergence of new mutants from mutations acquired during counterselection rather than beforehand, and it may have roles in processes as diverse as the development of antibiotic resistance and neoplasia. [ABSTRACT FROM AUTHOR]
Copyright of PLoS Genetics is the property of Public Library of Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Academic Search Complete
More Details
ISSN:15537390
DOI:10.1371/journal.pgen.1005477
Published in:PLoS Genetics
Language:English