Academic Journal
Mitochondrial segmentation and function prediction in live-cell images with deep learning
Title: | Mitochondrial segmentation and function prediction in live-cell images with deep learning |
---|---|
Authors: | Yang Ding, Jintao Li, Jiaxin Zhang, Panpan Li, Hua Bai, Bin Fang, Haixiao Fang, Kai Huang, Guangyu Wang, Cameron J. Nowell, Nicolas H. Voelcker, Bo Peng, Lin Li, Wei Huang |
Source: | Nature Communications, Vol 16, Iss 1, Pp 1-15 (2025) |
Publisher Information: | Nature Portfolio, 2025. |
Publication Year: | 2025 |
Collection: | LCC:Science |
Subject Terms: | Science |
More Details: | Abstract Mitochondrial morphology and function are intrinsically linked, indicating the opportunity to predict functions by analyzing morphological features in live-cell imaging. Herein, we introduce MoDL, a deep learning algorithm for mitochondrial image segmentation and function prediction. Trained on a dataset of 20,000 manually labeled mitochondria from super-resolution (SR) images, MoDL achieves superior segmentation accuracy, enabling comprehensive morphological analysis. Furthermore, MoDL predicts mitochondrial functions by employing an ensemble learning strategy, powered by an extended training dataset of over 100,000 SR images, each annotated with functional data from biochemical assays. By leveraging this large dataset alongside data fine-tuning and retraining, MoDL demonstrates the ability to precisely predict functions of heterogeneous mitochondria from unseen cell types through small sample size training. Our results highlight the MoDL’s potential to significantly impact mitochondrial research and drug discovery, illustrating its utility in exploring the complex relationship between mitochondrial form and function within a wide range of biological contexts. |
Document Type: | article |
File Description: | electronic resource |
Language: | English |
ISSN: | 2041-1723 |
Relation: | https://doaj.org/toc/2041-1723 |
DOI: | 10.1038/s41467-025-55825-x |
Access URL: | https://doaj.org/article/fda03b6a1f6f430a89259753f46a1f30 |
Accession Number: | edsdoj.fda03b6a1f6f430a89259753f46a1f30 |
Database: | Directory of Open Access Journals |
FullText | Links: – Type: other Url: https://resolver.ebsco.com:443/public/rma-ftfapi/ejs/direct?AccessToken=447E9C3E238936CAAE6C&Show=Object Text: Availability: 0 CustomLinks: – Url: https://login.libproxy.scu.edu/login?url=http://www.nature.com/openurl?genre=article&title=Nature%20Communications&volume=16&issue=1&spage=1 Name: Nature Publishing Category: fullText Text: Full Text from Nature Publishing MouseOverText: Full Text from Nature Publishing – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=20411723&ISBN=&volume=16&issue=1&date=20250101&spage=1&pages=1-15&title=Nature Communications&atitle=Mitochondrial%20segmentation%20and%20function%20prediction%20in%20live-cell%20images%20with%20deep%20learning&aulast=Yang%20Ding&id=DOI:10.1038/s41467-025-55825-x Name: Full Text Finder (for New FTF UI) (s8985755) Category: fullText Text: Find It @ SCU Libraries MouseOverText: Find It @ SCU Libraries – Url: https://doaj.org/article/fda03b6a1f6f430a89259753f46a1f30 Name: EDS - DOAJ (s8985755) Category: fullText Text: View record from DOAJ MouseOverText: View record from DOAJ |
---|---|
Header | DbId: edsdoj DbLabel: Directory of Open Access Journals An: edsdoj.fda03b6a1f6f430a89259753f46a1f30 RelevancyScore: 1082 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1081.5498046875 |
IllustrationInfo | |
Items | – Name: Title Label: Title Group: Ti Data: Mitochondrial segmentation and function prediction in live-cell images with deep learning – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Yang+Ding%22">Yang Ding</searchLink><br /><searchLink fieldCode="AR" term="%22Jintao+Li%22">Jintao Li</searchLink><br /><searchLink fieldCode="AR" term="%22Jiaxin+Zhang%22">Jiaxin Zhang</searchLink><br /><searchLink fieldCode="AR" term="%22Panpan+Li%22">Panpan Li</searchLink><br /><searchLink fieldCode="AR" term="%22Hua+Bai%22">Hua Bai</searchLink><br /><searchLink fieldCode="AR" term="%22Bin+Fang%22">Bin Fang</searchLink><br /><searchLink fieldCode="AR" term="%22Haixiao+Fang%22">Haixiao Fang</searchLink><br /><searchLink fieldCode="AR" term="%22Kai+Huang%22">Kai Huang</searchLink><br /><searchLink fieldCode="AR" term="%22Guangyu+Wang%22">Guangyu Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Cameron+J%2E+Nowell%22">Cameron J. Nowell</searchLink><br /><searchLink fieldCode="AR" term="%22Nicolas+H%2E+Voelcker%22">Nicolas H. Voelcker</searchLink><br /><searchLink fieldCode="AR" term="%22Bo+Peng%22">Bo Peng</searchLink><br /><searchLink fieldCode="AR" term="%22Lin+Li%22">Lin Li</searchLink><br /><searchLink fieldCode="AR" term="%22Wei+Huang%22">Wei Huang</searchLink> – Name: TitleSource Label: Source Group: Src Data: Nature Communications, Vol 16, Iss 1, Pp 1-15 (2025) – Name: Publisher Label: Publisher Information Group: PubInfo Data: Nature Portfolio, 2025. – Name: DatePubCY Label: Publication Year Group: Date Data: 2025 – Name: Subset Label: Collection Group: HoldingsInfo Data: LCC:Science – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Science%22">Science</searchLink> – Name: Abstract Label: Description Group: Ab Data: Abstract Mitochondrial morphology and function are intrinsically linked, indicating the opportunity to predict functions by analyzing morphological features in live-cell imaging. Herein, we introduce MoDL, a deep learning algorithm for mitochondrial image segmentation and function prediction. Trained on a dataset of 20,000 manually labeled mitochondria from super-resolution (SR) images, MoDL achieves superior segmentation accuracy, enabling comprehensive morphological analysis. Furthermore, MoDL predicts mitochondrial functions by employing an ensemble learning strategy, powered by an extended training dataset of over 100,000 SR images, each annotated with functional data from biochemical assays. By leveraging this large dataset alongside data fine-tuning and retraining, MoDL demonstrates the ability to precisely predict functions of heterogeneous mitochondria from unseen cell types through small sample size training. Our results highlight the MoDL’s potential to significantly impact mitochondrial research and drug discovery, illustrating its utility in exploring the complex relationship between mitochondrial form and function within a wide range of biological contexts. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article – Name: Format Label: File Description Group: SrcInfo Data: electronic resource – Name: Language Label: Language Group: Lang Data: English – Name: ISSN Label: ISSN Group: ISSN Data: 2041-1723 – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://doaj.org/toc/2041-1723 – Name: DOI Label: DOI Group: ID Data: 10.1038/s41467-025-55825-x – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/fda03b6a1f6f430a89259753f46a1f30" linkWindow="_blank">https://doaj.org/article/fda03b6a1f6f430a89259753f46a1f30</link> – Name: AN Label: Accession Number Group: ID Data: edsdoj.fda03b6a1f6f430a89259753f46a1f30 |
PLink | https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.fda03b6a1f6f430a89259753f46a1f30 |
RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1038/s41467-025-55825-x Languages: – Text: English PhysicalDescription: Pagination: PageCount: 15 StartPage: 1 Subjects: – SubjectFull: Science Type: general Titles: – TitleFull: Mitochondrial segmentation and function prediction in live-cell images with deep learning Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Yang Ding – PersonEntity: Name: NameFull: Jintao Li – PersonEntity: Name: NameFull: Jiaxin Zhang – PersonEntity: Name: NameFull: Panpan Li – PersonEntity: Name: NameFull: Hua Bai – PersonEntity: Name: NameFull: Bin Fang – PersonEntity: Name: NameFull: Haixiao Fang – PersonEntity: Name: NameFull: Kai Huang – PersonEntity: Name: NameFull: Guangyu Wang – PersonEntity: Name: NameFull: Cameron J. Nowell – PersonEntity: Name: NameFull: Nicolas H. Voelcker – PersonEntity: Name: NameFull: Bo Peng – PersonEntity: Name: NameFull: Lin Li – PersonEntity: Name: NameFull: Wei Huang IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 20411723 Numbering: – Type: volume Value: 16 – Type: issue Value: 1 Titles: – TitleFull: Nature Communications Type: main |
ResultId | 1 |