Enhancing Medical Image Classification With Context Modulated Attention and Multi-Scale Feature Fusion

Bibliographic Details
Title: Enhancing Medical Image Classification With Context Modulated Attention and Multi-Scale Feature Fusion
Authors: Renhan Zhang, Xuegang Luo, Junrui Lv, Junyang Cao, Yangping Zhu, Juan Wang, Bochuan Zheng
Source: IEEE Access, Vol 13, Pp 15226-15243 (2025)
Publisher Information: IEEE, 2025.
Publication Year: 2025
Collection: LCC:Electrical engineering. Electronics. Nuclear engineering
Subject Terms: Medical images, global semantics, local features, transformer, context modulated attention, multi-stage feature fusion network, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
More Details: This research proposes a multi-stage feature fusion network (MSFF) for medical image classification. In view of the problems existing in medical images, such as noise, diversity, and similarity among different classes, MSFF enhances the global context perception in the window partitioning framework through Context Modulation Attention (CMA). Meanwhile, it extracts fine-grained local information via the multi-stage Contextual Information Refinement (CIR) module and gradually fuses multi-stage local and global features to generate richer semantic representations. The experimental results demonstrate that MSFF significantly outperforms existing methods in multiple performance metrics (including accuracy, precision, recall, F1-score, Matthews Correlation Coefficient (MCC), Kappa coefficient, Area Under the Curve (AUC), balanced accuracy, and geometric mean) on four datasets (Endoscopic Bladder Tissue, Kvasir, SARS-COV-2 Ct-Scan, and Thyroid Nodule), showing its excellent performance in the task of medical image classification.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2169-3536
Relation: https://ieeexplore.ieee.org/document/10848071/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2025.3532354
Access URL: https://doaj.org/article/bbe3289c856f409f80e1ae37657b70e4
Accession Number: edsdoj.bbe3289c856f409f80e1ae37657b70e4
Database: Directory of Open Access Journals
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://login.libproxy.scu.edu/login?url=http://ieeexplore.ieee.org/search/searchresult.jsp?action=search&newsearch=true&queryText=%22DOI%22:10.1109/ACCESS.2025.3532354
    Name: EDS - IEEE (s8985755)
    Category: fullText
    Text: Check IEEE Xplore for full text
    MouseOverText: Check IEEE Xplore for full text. A new window will open.
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=21693536&ISBN=&volume=13&issue=&date=20250101&spage=15226&pages=15226-15243&title=IEEE Access&atitle=Enhancing%20Medical%20Image%20Classification%20With%20Context%20Modulated%20Attention%20and%20Multi-Scale%20Feature%20Fusion&aulast=Renhan%20Zhang&id=DOI:10.1109/ACCESS.2025.3532354
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/bbe3289c856f409f80e1ae37657b70e4
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.bbe3289c856f409f80e1ae37657b70e4
RelevancyScore: 1082
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1081.5498046875
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Enhancing Medical Image Classification With Context Modulated Attention and Multi-Scale Feature Fusion
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Renhan+Zhang%22">Renhan Zhang</searchLink><br /><searchLink fieldCode="AR" term="%22Xuegang+Luo%22">Xuegang Luo</searchLink><br /><searchLink fieldCode="AR" term="%22Junrui+Lv%22">Junrui Lv</searchLink><br /><searchLink fieldCode="AR" term="%22Junyang+Cao%22">Junyang Cao</searchLink><br /><searchLink fieldCode="AR" term="%22Yangping+Zhu%22">Yangping Zhu</searchLink><br /><searchLink fieldCode="AR" term="%22Juan+Wang%22">Juan Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Bochuan+Zheng%22">Bochuan Zheng</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: IEEE Access, Vol 13, Pp 15226-15243 (2025)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: IEEE, 2025.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2025
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Electrical engineering. Electronics. Nuclear engineering
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Medical+images%22">Medical images</searchLink><br /><searchLink fieldCode="DE" term="%22global+semantics%22">global semantics</searchLink><br /><searchLink fieldCode="DE" term="%22local+features%22">local features</searchLink><br /><searchLink fieldCode="DE" term="%22transformer%22">transformer</searchLink><br /><searchLink fieldCode="DE" term="%22context+modulated+attention%22">context modulated attention</searchLink><br /><searchLink fieldCode="DE" term="%22multi-stage+feature+fusion+network%22">multi-stage feature fusion network</searchLink><br /><searchLink fieldCode="DE" term="%22Electrical+engineering%2E+Electronics%2E+Nuclear+engineering%22">Electrical engineering. Electronics. Nuclear engineering</searchLink><br /><searchLink fieldCode="DE" term="%22TK1-9971%22">TK1-9971</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: This research proposes a multi-stage feature fusion network (MSFF) for medical image classification. In view of the problems existing in medical images, such as noise, diversity, and similarity among different classes, MSFF enhances the global context perception in the window partitioning framework through Context Modulation Attention (CMA). Meanwhile, it extracts fine-grained local information via the multi-stage Contextual Information Refinement (CIR) module and gradually fuses multi-stage local and global features to generate richer semantic representations. The experimental results demonstrate that MSFF significantly outperforms existing methods in multiple performance metrics (including accuracy, precision, recall, F1-score, Matthews Correlation Coefficient (MCC), Kappa coefficient, Area Under the Curve (AUC), balanced accuracy, and geometric mean) on four datasets (Endoscopic Bladder Tissue, Kvasir, SARS-COV-2 Ct-Scan, and Thyroid Nodule), showing its excellent performance in the task of medical image classification.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2169-3536
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://ieeexplore.ieee.org/document/10848071/; https://doaj.org/toc/2169-3536
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1109/ACCESS.2025.3532354
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/bbe3289c856f409f80e1ae37657b70e4" linkWindow="_blank">https://doaj.org/article/bbe3289c856f409f80e1ae37657b70e4</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.bbe3289c856f409f80e1ae37657b70e4
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.bbe3289c856f409f80e1ae37657b70e4
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/ACCESS.2025.3532354
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 18
        StartPage: 15226
    Subjects:
      – SubjectFull: Medical images
        Type: general
      – SubjectFull: global semantics
        Type: general
      – SubjectFull: local features
        Type: general
      – SubjectFull: transformer
        Type: general
      – SubjectFull: context modulated attention
        Type: general
      – SubjectFull: multi-stage feature fusion network
        Type: general
      – SubjectFull: Electrical engineering. Electronics. Nuclear engineering
        Type: general
      – SubjectFull: TK1-9971
        Type: general
    Titles:
      – TitleFull: Enhancing Medical Image Classification With Context Modulated Attention and Multi-Scale Feature Fusion
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Renhan Zhang
      – PersonEntity:
          Name:
            NameFull: Xuegang Luo
      – PersonEntity:
          Name:
            NameFull: Junrui Lv
      – PersonEntity:
          Name:
            NameFull: Junyang Cao
      – PersonEntity:
          Name:
            NameFull: Yangping Zhu
      – PersonEntity:
          Name:
            NameFull: Juan Wang
      – PersonEntity:
          Name:
            NameFull: Bochuan Zheng
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 21693536
          Numbering:
            – Type: volume
              Value: 13
          Titles:
            – TitleFull: IEEE Access
              Type: main
ResultId 1