Academic Journal
Enhancing Medical Image Classification With Context Modulated Attention and Multi-Scale Feature Fusion
Title: | Enhancing Medical Image Classification With Context Modulated Attention and Multi-Scale Feature Fusion |
---|---|
Authors: | Renhan Zhang, Xuegang Luo, Junrui Lv, Junyang Cao, Yangping Zhu, Juan Wang, Bochuan Zheng |
Source: | IEEE Access, Vol 13, Pp 15226-15243 (2025) |
Publisher Information: | IEEE, 2025. |
Publication Year: | 2025 |
Collection: | LCC:Electrical engineering. Electronics. Nuclear engineering |
Subject Terms: | Medical images, global semantics, local features, transformer, context modulated attention, multi-stage feature fusion network, Electrical engineering. Electronics. Nuclear engineering, TK1-9971 |
More Details: | This research proposes a multi-stage feature fusion network (MSFF) for medical image classification. In view of the problems existing in medical images, such as noise, diversity, and similarity among different classes, MSFF enhances the global context perception in the window partitioning framework through Context Modulation Attention (CMA). Meanwhile, it extracts fine-grained local information via the multi-stage Contextual Information Refinement (CIR) module and gradually fuses multi-stage local and global features to generate richer semantic representations. The experimental results demonstrate that MSFF significantly outperforms existing methods in multiple performance metrics (including accuracy, precision, recall, F1-score, Matthews Correlation Coefficient (MCC), Kappa coefficient, Area Under the Curve (AUC), balanced accuracy, and geometric mean) on four datasets (Endoscopic Bladder Tissue, Kvasir, SARS-COV-2 Ct-Scan, and Thyroid Nodule), showing its excellent performance in the task of medical image classification. |
Document Type: | article |
File Description: | electronic resource |
Language: | English |
ISSN: | 2169-3536 |
Relation: | https://ieeexplore.ieee.org/document/10848071/; https://doaj.org/toc/2169-3536 |
DOI: | 10.1109/ACCESS.2025.3532354 |
Access URL: | https://doaj.org/article/bbe3289c856f409f80e1ae37657b70e4 |
Accession Number: | edsdoj.bbe3289c856f409f80e1ae37657b70e4 |
Database: | Directory of Open Access Journals |
FullText | Text: Availability: 0 CustomLinks: – Url: https://login.libproxy.scu.edu/login?url=http://ieeexplore.ieee.org/search/searchresult.jsp?action=search&newsearch=true&queryText=%22DOI%22:10.1109/ACCESS.2025.3532354 Name: EDS - IEEE (s8985755) Category: fullText Text: Check IEEE Xplore for full text MouseOverText: Check IEEE Xplore for full text. A new window will open. – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=21693536&ISBN=&volume=13&issue=&date=20250101&spage=15226&pages=15226-15243&title=IEEE Access&atitle=Enhancing%20Medical%20Image%20Classification%20With%20Context%20Modulated%20Attention%20and%20Multi-Scale%20Feature%20Fusion&aulast=Renhan%20Zhang&id=DOI:10.1109/ACCESS.2025.3532354 Name: Full Text Finder (for New FTF UI) (s8985755) Category: fullText Text: Find It @ SCU Libraries MouseOverText: Find It @ SCU Libraries – Url: https://doaj.org/article/bbe3289c856f409f80e1ae37657b70e4 Name: EDS - DOAJ (s8985755) Category: fullText Text: View record from DOAJ MouseOverText: View record from DOAJ |
---|---|
Header | DbId: edsdoj DbLabel: Directory of Open Access Journals An: edsdoj.bbe3289c856f409f80e1ae37657b70e4 RelevancyScore: 1082 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1081.5498046875 |
IllustrationInfo | |
Items | – Name: Title Label: Title Group: Ti Data: Enhancing Medical Image Classification With Context Modulated Attention and Multi-Scale Feature Fusion – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Renhan+Zhang%22">Renhan Zhang</searchLink><br /><searchLink fieldCode="AR" term="%22Xuegang+Luo%22">Xuegang Luo</searchLink><br /><searchLink fieldCode="AR" term="%22Junrui+Lv%22">Junrui Lv</searchLink><br /><searchLink fieldCode="AR" term="%22Junyang+Cao%22">Junyang Cao</searchLink><br /><searchLink fieldCode="AR" term="%22Yangping+Zhu%22">Yangping Zhu</searchLink><br /><searchLink fieldCode="AR" term="%22Juan+Wang%22">Juan Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Bochuan+Zheng%22">Bochuan Zheng</searchLink> – Name: TitleSource Label: Source Group: Src Data: IEEE Access, Vol 13, Pp 15226-15243 (2025) – Name: Publisher Label: Publisher Information Group: PubInfo Data: IEEE, 2025. – Name: DatePubCY Label: Publication Year Group: Date Data: 2025 – Name: Subset Label: Collection Group: HoldingsInfo Data: LCC:Electrical engineering. Electronics. Nuclear engineering – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Medical+images%22">Medical images</searchLink><br /><searchLink fieldCode="DE" term="%22global+semantics%22">global semantics</searchLink><br /><searchLink fieldCode="DE" term="%22local+features%22">local features</searchLink><br /><searchLink fieldCode="DE" term="%22transformer%22">transformer</searchLink><br /><searchLink fieldCode="DE" term="%22context+modulated+attention%22">context modulated attention</searchLink><br /><searchLink fieldCode="DE" term="%22multi-stage+feature+fusion+network%22">multi-stage feature fusion network</searchLink><br /><searchLink fieldCode="DE" term="%22Electrical+engineering%2E+Electronics%2E+Nuclear+engineering%22">Electrical engineering. Electronics. Nuclear engineering</searchLink><br /><searchLink fieldCode="DE" term="%22TK1-9971%22">TK1-9971</searchLink> – Name: Abstract Label: Description Group: Ab Data: This research proposes a multi-stage feature fusion network (MSFF) for medical image classification. In view of the problems existing in medical images, such as noise, diversity, and similarity among different classes, MSFF enhances the global context perception in the window partitioning framework through Context Modulation Attention (CMA). Meanwhile, it extracts fine-grained local information via the multi-stage Contextual Information Refinement (CIR) module and gradually fuses multi-stage local and global features to generate richer semantic representations. The experimental results demonstrate that MSFF significantly outperforms existing methods in multiple performance metrics (including accuracy, precision, recall, F1-score, Matthews Correlation Coefficient (MCC), Kappa coefficient, Area Under the Curve (AUC), balanced accuracy, and geometric mean) on four datasets (Endoscopic Bladder Tissue, Kvasir, SARS-COV-2 Ct-Scan, and Thyroid Nodule), showing its excellent performance in the task of medical image classification. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article – Name: Format Label: File Description Group: SrcInfo Data: electronic resource – Name: Language Label: Language Group: Lang Data: English – Name: ISSN Label: ISSN Group: ISSN Data: 2169-3536 – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://ieeexplore.ieee.org/document/10848071/; https://doaj.org/toc/2169-3536 – Name: DOI Label: DOI Group: ID Data: 10.1109/ACCESS.2025.3532354 – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/bbe3289c856f409f80e1ae37657b70e4" linkWindow="_blank">https://doaj.org/article/bbe3289c856f409f80e1ae37657b70e4</link> – Name: AN Label: Accession Number Group: ID Data: edsdoj.bbe3289c856f409f80e1ae37657b70e4 |
PLink | https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.bbe3289c856f409f80e1ae37657b70e4 |
RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1109/ACCESS.2025.3532354 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 18 StartPage: 15226 Subjects: – SubjectFull: Medical images Type: general – SubjectFull: global semantics Type: general – SubjectFull: local features Type: general – SubjectFull: transformer Type: general – SubjectFull: context modulated attention Type: general – SubjectFull: multi-stage feature fusion network Type: general – SubjectFull: Electrical engineering. Electronics. Nuclear engineering Type: general – SubjectFull: TK1-9971 Type: general Titles: – TitleFull: Enhancing Medical Image Classification With Context Modulated Attention and Multi-Scale Feature Fusion Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Renhan Zhang – PersonEntity: Name: NameFull: Xuegang Luo – PersonEntity: Name: NameFull: Junrui Lv – PersonEntity: Name: NameFull: Junyang Cao – PersonEntity: Name: NameFull: Yangping Zhu – PersonEntity: Name: NameFull: Juan Wang – PersonEntity: Name: NameFull: Bochuan Zheng IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 01 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 21693536 Numbering: – Type: volume Value: 13 Titles: – TitleFull: IEEE Access Type: main |
ResultId | 1 |