Academic Journal
Axial compression stress-strain relationship of lithium slag rubber concrete
Title: | Axial compression stress-strain relationship of lithium slag rubber concrete |
---|---|
Authors: | Kaiwei Liu, Jiongfeng Liang, Caisen Wang, Xuegang Wang, Jicheng Liu |
Source: | Scientific Reports, Vol 14, Iss 1, Pp 1-17 (2024) |
Publisher Information: | Nature Portfolio, 2024. |
Publication Year: | 2024 |
Collection: | LCC:Medicine LCC:Science |
Subject Terms: | Axial compressive, Failure mechanism, Lithium slag, Prediction model, Rubber concrete, Stress-strain relationship, Medicine, Science |
More Details: | Abstract Replacing cement with lithium slag and fine aggregate with rubber in concrete solves waste disposal, reduces material consumption, boosts sustainability, and enhances concrete performance. A set of prismatic concrete specimens with varying proportions were designed and experimentally tested in order to study the compressive stress-strain behavior of lithium slag rubber concrete (LSRC). The main factors affecting the specimens were lithium slag substitution ratio (S L=0%, 10%, 20%, 30%) and rubber substitution ratio (S R=0%, 5%, 10%, 15%). The results demonstrated that the LSRC exhibited good integrity during the damage. Furthermore, the incorporation of lithium slag (LS) was found to effectively compensate for the reduction in compressive strength due to the incorporation of rubber. When 10% of the fine aggregate was replaced with rubber and 20% of the cement was substituted with lithium slag, the axial compressive strength, elastic modulus, and peak strain of the tested specimens increased by 21.57%, 6.92%, and 17.26%, respectively. Compared with ordinary concrete, LSRC has good toughness, impact resistance and durability with minimal loss of strength, and has broad application prospects in engineering fields (such as airports, highways, housing expansion joints, concrete floors and railway concrete sleepers, etc.). Based on the experimental data, simplified modified equations to predict the compressive strength, elastic modulus, peak strain and axial stress-strain constitutive model of LSRC were proposed, so as to promote the development of LSRC. |
Document Type: | article |
File Description: | electronic resource |
Language: | English |
ISSN: | 2045-2322 |
Relation: | https://doaj.org/toc/2045-2322 |
DOI: | 10.1038/s41598-024-73566-7 |
Access URL: | https://doaj.org/article/bb82dc28cec2483eb6a992505288b053 |
Accession Number: | edsdoj.bb82dc28cec2483eb6a992505288b053 |
Database: | Directory of Open Access Journals |
Full text is not displayed to guests. | Login for full access. |
FullText | Links: – Type: pdflink Url: https://content.ebscohost.com/cds/retrieve?content=AQICAHjPtM4BHU3ZchRwgzYmadcigk49r9CVlbU7V5F6lgH7WwF_SI6XlrH2vlqDYB-EeeXiAAAA4jCB3wYJKoZIhvcNAQcGoIHRMIHOAgEAMIHIBgkqhkiG9w0BBwEwHgYJYIZIAWUDBAEuMBEEDOLNCR6Ii6oEM8catgIBEICBmlzWzswZJIC8CXdMv8Ns0L31OkiaqzNT4p5eHc2qaeSbn609Dmp_g5BDkhZi8cw9EdU3Afd3tFbDhDCQkbt2iLgJv4HFRO6HcdSU4prMcjeV9Fj1kF9JFH5jigv7NRvKDzBntRbWe_LtckUQY_ciWhnTiLFxBig2dFGuBH9Mxm9Pkk3mQwz1q_T--SBUAp8Qei1pOWqECZyfpOg= Text: Availability: 1 Value: <anid>AN0181944400;[fkqs]30dec.24;2025Mar11.13:04;v2.2.500</anid> <title id="AN0181944400-1">The effects of high-intensity interval training on cognitive performance: a systematic review and meta-analysis </title> <p>Cognitive decline is an important feature of an aging population. Despite the large body of research investigating the effects of high-intensity interval training (HIIT) on cognitive performance, reports of its effectiveness are inconsistent and it is difficult to determine what factors moderate these effects. The purpose of this study was to conduct a meta-analysis of existing randomised controlled trials investigating the effects of HIIT on various domains of cognitive performance, and to further examine the intervention cycle and age-related moderating effects. A comprehensive literature search was conducted across a range of databases, including PubMed, Embase, the Cochrane Library, Web of Science, Scopus, and EBSCO. The meta-analysis included data from 20 RCT studies. The results of the analyses demonstrated that HIIT significantly enhanced information processing (SMD = 0.33, 95% CI: 0.15–0.52, P = 0.0005), executive function (SMD = 0.38, 95% CI: 0.26 – 0.50, P &lt; 0.00001), and memory (SMD = 0.21, 95% CI: 0.07–0.35, P = 0.004). Subgroup analyses demonstrated that HIIT enhanced information processing in individuals aged 60 and above, improved executive functioning in individuals of all ages, and enhanced memory in individuals aged 30 to 60. Acute HIIT improved executive function, less than 8 weeks of HIIT improved executive function and memory, and more than 8 weeks of HIIT improved information processing, executive function and memory. The findings of this study indicate that HIIT has a beneficial effect on cognitive performance. Chronic HIIT represents a potential non-pharmacological intervention for cognitive health. Further high-quality research is required to validate and extend these findings.</p> <p>Keywords: Psychology and Cognitive Sciences Psychology</p> <hd id="AN0181944400-2">Introduction</hd> <p>The increasing aging of the world population and associated degenerative diseases have become public health challenges[<reflink idref="bib1" id="ref1">1</reflink>]. Cognitive decline is a prominent feature of population aging, and an increasing number of studies have investigated strategies to enhance cognitive performance[<reflink idref="bib2" id="ref2">2</reflink>],[<reflink idref="bib3" id="ref3">3</reflink>]. Exercise has long been recognised as a crucial component of health promotion[<reflink idref="bib4" id="ref4">4</reflink>]. The benefits of exercise are well documented and encompass cardiovascular health[<reflink idref="bib5" id="ref5">5</reflink>], muscle strength[<reflink idref="bib6" id="ref6">6</reflink>], and weight management[<reflink idref="bib7" id="ref7">7</reflink>].</p> <p>An increasing body of research evidence indicates that exercise can be an effective intervention for improving cognitive performance[<reflink idref="bib8" id="ref8">8</reflink>], [<reflink idref="bib9" id="ref9">9</reflink>]–[<reflink idref="bib10" id="ref10">10</reflink>]. The underlying neurophysiological mechanism by which exercise enhances cognitive performance is thought to be accelerated brain-derived neurotrophic factor (BDNF) synthesis causing activation of pathways to initiate neuroplasticity and neurogenesis in the hippocampus[<reflink idref="bib11" id="ref11">11</reflink>],[<reflink idref="bib12" id="ref12">12</reflink>]. Furthermore, research indicates that exercise is associated with enhanced mood states and diminished stress and anxiety levels[<reflink idref="bib13" id="ref13">13</reflink>], [<reflink idref="bib14" id="ref14">14</reflink>]–[<reflink idref="bib15" id="ref15">15</reflink>], which in turn indirectly influence cognitive performance.</p> <p>Prior research has demonstrated that distinct types of exercise modalities elicit disparate effects on cognitive performance. For instance, aerobic exercise demonstrated incremental enhancements in attention, executive function, and memory[<reflink idref="bib9" id="ref16">9</reflink>]. Resistance training exhibited favourable outcomes on overall cognition, cognitive impairment screening measures, and executive function, while exerting no influence on working memory[<reflink idref="bib16" id="ref17">16</reflink>]. In recent years, high-intensity interval training has been the subject of considerable research interest due to its notable benefits for cardiorespiratory and metabolic health[<reflink idref="bib17" id="ref18">17</reflink>].</p> <p>The primary appeal of HIIT is its capacity to achieve elevated energy expenditure and cardiorespiratory loads in a condensed timeframe through the alternation of high-intensity exercise with brief periods of rest. This approach offers the benefit of a relatively brief training duration while eliciting comparable physiological adaptations to those observed in longer traditional aerobic training regimens[<reflink idref="bib18" id="ref19">18</reflink>]. And cardiorespiratory fitness is thought to be associated with more effective cognitive function[<reflink idref="bib19" id="ref20">19</reflink>]. For this reason, HIIT has also been identified as a potential method of enhancing cognitive function[<reflink idref="bib20" id="ref21">20</reflink>].</p> <p>Northey et al. demonstrated that a HIIT intervention led to a notable enhancement in executive functioning in older adults[<reflink idref="bib21" id="ref22">21</reflink>]. Similarly, Liu et al. showed that a HIIT intervention resulted in a considerable improvement in executive functioning, even in young adults with the highest cognitive abilities[<reflink idref="bib22" id="ref23">22</reflink>]. Nevertheless, Chua et al. demonstrated that a HIIT intervention did not enhance memory in children[<reflink idref="bib23" id="ref24">23</reflink>]. The extant literature does not yield a consensus regarding the impact of HIIT on diverse domains of cognitive performance. The current evidence base is insufficient to draw definitive conclusions. Additionally, the age of participants and the cycle of intervention varied across studies, which may contribute to the inconsistency in findings.</p> <p>Therefore, this study collected the existing literature on the effects of HIIT on cognitive performance. After screening and extraction, meta-analyses and subgroup analyses of participant age and intervention cycles were performed. The implications of these findings are discussed in order to synthesise them to provide clearer evidence and an evidence-based basis for future research and practice.</p> <hd id="AN0181944400-3">Methods</hd> <p>This study followed the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines[<reflink idref="bib24" id="ref25">24</reflink>]. It is registered in the Prospective International Registry for Systematic Reviews (PROSPERO) under the registration number CRD42024577003.</p> <hd id="AN0181944400-4">Data collection</hd> <p>This study searched the electronic databases PubMed, Embase, Cochrane Library, Web of Science, Scopus and EBSCO. The search strategy used Boolean operators ('AND' and 'OR') to link subject terms with free terms, and the following key words and related terms (MeSH) were used for the search: 'high-intensity interval training' 'high-intensity intermittent exercise' 'sprint interval training' 'HIIT' 'cognition' 'executive function' 'reaction time' 'memory' 'intelligence' 'perception' 'cognitive performance' 'recall' 'mental' 'processing' 'randomised controlled trial' 'RCT'. The search period was from the inception of the respective databases to February 2024, and the language restriction was English. Details of the search methodology can be found in Supplementary Material S1.</p> <hd id="AN0181944400-5">Choice criterion</hd> <p>Literature was included if it included the effect of high intensity interval training on cognitive performance and if it was a randomised controlled trial. In this study, high-intensity interval training was defined as intermittent exercise performed at maximal effort, including short or long intervals (ranging from ≤ 45 s to 2 ~ 4 min) at a relative intensity of ≥ 80% VO<subs>2max</subs>, ≥ 80% HR<subs>reserve</subs>, or ≥ 85% HR<subs>max</subs>, with short rest or active recovery intervals between sessions[<reflink idref="bib18" id="ref26">18</reflink>]. The definition of cognitive performance was based on recognised cognitive domains in the current cognitive psychology and neuropsychology literature, including attention, information processing, executive function, memory and reaction time[<reflink idref="bib25" id="ref27">25</reflink>], [<reflink idref="bib26" id="ref28">26</reflink>]–[<reflink idref="bib27" id="ref29">27</reflink>]. Animal studies, reviews, conference papers, commentaries and articles for which the full text was not available and data could not be obtained from the original article were excluded. Initially, two authors, KHL and WZ, independently searched and determined the relevance of article titles and abstracts, and then independently reviewed the full text of potentially eligible articles. Any disagreements between the authors were resolved by discussion with HBW.</p> <hd id="AN0181944400-6">Cognitive task type</hd> <p>Cognitive performance is a broad and complex concept; therefore, assessing changes in cognitive performance from a holistic perspective may be one-sided and subjective, and may lead to significant heterogeneity problems. To better assess cognitive performance, we divided it according to the types of cognitive tasks identified by Lezak et al.[<reflink idref="bib26" id="ref30">26</reflink>], see Table 1.</p> <p>Table 1 Cognitive tasks and cognitive task categories.</p> <p> <ephtml> &lt;table frame="hsides" rules="groups"&gt;&lt;thead&gt;&lt;tr&gt;&lt;th align="left"&gt;&lt;p&gt;Attention&lt;/p&gt;&lt;/th&gt;&lt;/tr&gt;&lt;/thead&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9312;D2 Test &amp;#9313;Test Battery of Attention Performance&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Information processing&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9312;Trail Making Test A &amp;#9313;Stroop Neutral &amp;#9314;Digit Symbol Substitution Test&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Executive function&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9312;Trail Making Test B &amp;#9313;Flanker Test &amp;#9314;Groton Maze Learning Task &amp;#9315;Stroop Test &amp;#9316;Digital Conversion Tasks&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Memory&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9312;One Card Learning Task &amp;#9313;N-Back Task &amp;#9314;International Shopping List Task &amp;#9315;Digit Span Task &amp;#9316;Rey-Osterrieth Complex Figure Test &amp;#9317;Wechsler Letter-Number Sequencing &amp;#9318;Wechsler Logical Memory &amp;#9319; Verbal Learning Test &amp;#9320;Brief Visuospatial Memory Test &amp;#9321;Sternberg Paradigm&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Reaction Time&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9312;Simple Reaction Time Task&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt; </ephtml> </p> <hd id="AN0181944400-7">Data extraction and statistical analysis</hd> <p>Data from the included articles were examined and extracted, including study authors, year, country, sample size of experimental and control groups, sample characteristics, intervention characteristics, study design and cognitive measures. The results were calculated using standardised mean differences (SMDs) and 95% confidence intervals (CIs). The SMDs were used because the included studies used different cognitive tasks to measure cognitive performance. An improvement in results on memory tasks is reflected in an increase in memory scores. For the tasks measuring information processing and executive function, the improvement in scores was reflected in a reduction in reaction time. To correct for effects that were inconsistent with the direction of our meta-analyses, we multiplied the effect size values by -1 to ensure that all effects were in the same direction[<reflink idref="bib28" id="ref31">28</reflink>]. Effect sizes were classified as large (SMD &gt; 0.8), medium (SMD 0.5 ~ 0.8), small (SMD 0.2 ~ 0.5) and moderate (SMD &lt; 0.2)[<reflink idref="bib29" id="ref32">29</reflink>]. Significance levels were set at <emph>P</emph> &lt; 0.05 and 95% confidence intervals. Due to the expected heterogeneity in the age of the sample, HIIT intervention (intensity and duration) between the included studies, the results of our analyses were analysed using a random effects model[<reflink idref="bib30" id="ref33">30</reflink>]. Heterogeneity between studies was summarised by the Q statistic calculated in a chi-square analysis, and I<sups>2</sups> values were calculated to examine inconsistencies between the results of the included studies, with I<sups>2</sups> values interpreted as low (<reflink idref="bib25" id="ref34">25</reflink>), medium (<reflink idref="bib50" id="ref35">50</reflink>), and high (<reflink idref="bib75" id="ref36">75</reflink>)[<reflink idref="bib31" id="ref37">31</reflink>]. Risk of bias was assessed for the included literature using the Cochrane Risk of Bias Assessment Tool. Data were analysed using Review Manager software (RevMan, 5.4, The Cochrane Collaboration, 2020).</p> <hd id="AN0181944400-8">Results</hd> <p>A total of 1462 studies were searched in all databases, 1442 were excluded based on the inclusion criteria, and a total of 20 studies were included in the final meta-analysis, using a flowchart to document the process of literature screening, see Fig. 1.</p> <p>Graph: Fig. 1 PRISMA flow diagram.</p> <hd id="AN0181944400-9">Study characteristics</hd> <p>A total of 20 studies and data from 981 subjects were included in the meta-analysis. 19 studies reported a mean age of the sample of 35.20 ± 24.04 years, with the majority of effects coming from studies of middle-aged adults (30 ~ 60 years, <emph>n</emph> = 6 studies), and fewer studies of young adults (20 ~ 30 years, <emph>n</emph> = 5 studies), children and adolescents (8 ~ 20 years, <emph>n</emph> = 5 studies), and older adults (60 ~ years, <emph>n</emph> = 3 studies). The meta-analyses included 3 studies on attention measures with 2 attention task paradigms, 8 studies on information processing measures with 3 information processing task paradigms, 15 studies on executive function measures with 8 executive function task paradigms, 7 studies on memory measures with 10 memory task paradigms, and 1 study on reaction time measured in 1 study with 1 reaction time task paradigm. Table 2 documents the characteristics of the studies included in the meta-analysis.</p> <p>Table 2 Characteristics of all studies included.</p> <p> <ephtml> &lt;table frame="hsides" rules="groups"&gt;&lt;thead&gt;&lt;tr&gt;&lt;th align="left"&gt;&lt;p&gt;Studies&lt;/p&gt;&lt;/th&gt;&lt;th align="left"&gt;&lt;p&gt;Counties&lt;/p&gt;&lt;/th&gt;&lt;th align="left"&gt;&lt;p&gt;Populations&lt;/p&gt;&lt;/th&gt;&lt;th align="left"&gt;&lt;p&gt;Participants&lt;/p&gt;&lt;/th&gt;&lt;th align="left"&gt;&lt;p&gt;Sex&lt;/p&gt;&lt;/th&gt;&lt;th align="left"&gt;&lt;p&gt;Age (years)&lt;/p&gt;&lt;/th&gt;&lt;th align="left"&gt;&lt;p&gt;Interventions&lt;/p&gt;&lt;/th&gt;&lt;th align="left"&gt;&lt;p&gt;Designs&lt;/p&gt;&lt;/th&gt;&lt;th align="left"&gt;&lt;p&gt;Outcomes&lt;/p&gt;&lt;/th&gt;&lt;/tr&gt;&lt;/thead&gt;&lt;tbody&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Costigan et al.&lt;xref ref-type="bibr" rid="bibr32"&gt;32&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Australia&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Adolescents&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 22&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 22&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;11 M/11F&lt;/p&gt;&lt;p&gt;11 M/11F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;15.5 &amp;#177; 0.6&lt;/p&gt;&lt;p&gt;15.6 &amp;#177; 0.6&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;8 weeks&lt;/p&gt;&lt;p&gt;3 times/week&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9314;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Connolly et al.&lt;xref ref-type="bibr" rid="bibr33"&gt;33&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;UK&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Women&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 15&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 15&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;0 M/15F&lt;/p&gt;&lt;p&gt;0 M/15F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;44 &amp;#177; 7&lt;/p&gt;&lt;p&gt;45 &amp;#177; 7&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;12 weeks&lt;/p&gt;&lt;p&gt;3 times/week&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9315;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Mezcua-Hidalgo et al.&lt;xref ref-type="bibr" rid="bibr34"&gt;34&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Spain&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Adolescents&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 77&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 81&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;42 M/35F&lt;/p&gt;&lt;p&gt;38 M/43F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;13.88 &amp;#177; 1.25&lt;/p&gt;&lt;p&gt;14.20 &amp;#177; 1.31&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Acute&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9312;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Coetsee and Terblanche&lt;xref ref-type="bibr" rid="bibr35"&gt;35&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;South Africa&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Older adults&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 13&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 19&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;3 M/10F&lt;/p&gt;&lt;p&gt;8 M/11F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;64.5 &amp;#177; 6.3&lt;/p&gt;&lt;p&gt;62.5 &amp;#177; 5.6&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;16 weeks&lt;/p&gt;&lt;p&gt;3 times/week&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9313;&amp;#9314;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Chua et al.&lt;xref ref-type="bibr" rid="bibr23"&gt;23&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Singapore&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Children&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 38&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 25&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;0 M/38F&lt;/p&gt;&lt;p&gt;0 M/25F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;NA&lt;/p&gt;&lt;p&gt;NA&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Acute&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9315;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Brown and Bray&lt;xref ref-type="bibr" rid="bibr36"&gt;36&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Canada&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;University students&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 22&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 20&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;NA&lt;/p&gt;&lt;p&gt;NA&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;19.95 &amp;#177; 1.96&lt;/p&gt;&lt;p&gt;20.85 &amp;#177; 1.66&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Acute&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9314;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Northey et al.&lt;xref ref-type="bibr" rid="bibr21"&gt;21&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Australia&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Female cancer survivors&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 6&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 6&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;0 M/6F&lt;/p&gt;&lt;p&gt;0 M/6F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;60.3 &amp;#177; 8.1&lt;/p&gt;&lt;p&gt;61.5 &amp;#177; 7.8&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;12 weeks&lt;/p&gt;&lt;p&gt;3 times/week&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9314;&amp;#9315;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Lee et al.&lt;xref ref-type="bibr" rid="bibr37"&gt;37&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Canada&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Adolescents hospitalized for a mental illness&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&lt;italic&gt;n&lt;/italic&gt; = 28&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;8 M/20F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;15.5 &amp;#177; 0.92&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Acute&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Cross-over&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9313;&amp;#9314;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Mekari et al.&lt;xref ref-type="bibr" rid="bibr38"&gt;38&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Canada&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Adults&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 12&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 13&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;3 M/9F&lt;/p&gt;&lt;p&gt;4 M/9F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;29 &amp;#177; 10.3&lt;/p&gt;&lt;p&gt;35 &amp;#177; 7.4&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;6 weeks&lt;/p&gt;&lt;p&gt;3 times/week&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9313;&amp;#9314;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Hatch et al.&lt;xref ref-type="bibr" rid="bibr39"&gt;39&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;UK&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Adolescents&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&lt;italic&gt;n&lt;/italic&gt; = 38&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;15 M/23F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;12.4 &amp;#177; 0.4&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Acute&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Cross-over&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9313;&amp;#9314;&amp;#9315;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Zimmer et al.&lt;xref ref-type="bibr" rid="bibr40"&gt;40&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Switzerland&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Multiple sclerosis&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 27&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 30&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;7 M/20F&lt;/p&gt;&lt;p&gt;12 M/18F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;51 &amp;#177; 9.9&lt;/p&gt;&lt;p&gt;48 &amp;#177; 12.1&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;3 weeks&lt;/p&gt;&lt;p&gt;3 times/week&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9312;&amp;#9313;&amp;#9314;&amp;#9315;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Oliveira et al.&lt;xref ref-type="bibr" rid="bibr41"&gt;41&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Brazil&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Overweight/obese adults&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 11&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 10&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;NA&lt;/p&gt;&lt;p&gt;NA&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;29.7 &amp;#177; 8.3&lt;/p&gt;&lt;p&gt;33.2 &amp;#177; 6.6&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;12 weeks&lt;/p&gt;&lt;p&gt;3 times/week&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9314;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Kendall et al. &lt;xref ref-type="bibr" rid="bibr42"&gt;42&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;USA&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Young adults&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 20&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 19&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;8 M/12F&lt;/p&gt;&lt;p&gt;9 M/10F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;22.7 &amp;#177; 3.3&lt;/p&gt;&lt;p&gt;22.8 &amp;#177; 1.4&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Acute&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9316;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;De Lima et al.&lt;xref ref-type="bibr" rid="bibr43"&gt;43&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Brazil&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Middle-aged&lt;/p&gt;&lt;p&gt;overweight men&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 13&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 12&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;13 M/0F&lt;/p&gt;&lt;p&gt;12 M/0F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;39.46 &amp;#177; 5.44&lt;/p&gt;&lt;p&gt;40.50 &amp;#177; 5.63&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;8 weeks&lt;/p&gt;&lt;p&gt;3 times/week&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9313;&amp;#9314;&amp;#9315;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Wang et al.&lt;xref ref-type="bibr" rid="bibr44"&gt;44&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;China&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;College students&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 26&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 28&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;17 M/9F&lt;/p&gt;&lt;p&gt;15 M/13F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;21.98 &amp;#177; 2.25&lt;/p&gt;&lt;p&gt;22.79 &amp;#177; 2.36&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;6 weeks&lt;/p&gt;&lt;p&gt;3 times/week&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9314;&amp;#9315;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Liu et al.&lt;xref ref-type="bibr" rid="bibr22"&gt;22&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;China&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Young adults&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 26&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 20&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;11 M/15F&lt;/p&gt;&lt;p&gt;10 M/10F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;24.83 &amp;#177; 2.35&lt;/p&gt;&lt;p&gt;25.42 &amp;#177; 2.61&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;12 weeks&lt;/p&gt;&lt;p&gt;3 times/week&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9314;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Kao et al.&lt;xref ref-type="bibr" rid="bibr45"&gt;45&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;USA&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Children&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 25&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 24&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;13 M/12F&lt;/p&gt;&lt;p&gt;14 M/10F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;9.2 &amp;#177; 0.8&lt;/p&gt;&lt;p&gt;8.7 &amp;#177; 0.8&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Acute&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9314;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Zhu et al.&lt;xref ref-type="bibr" rid="bibr46"&gt;46&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;China&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Healthy young males&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&lt;italic&gt;n&lt;/italic&gt; = 16&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;16 M/0F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;21 &amp;#177; 1.7&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Acute&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Cross-over&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9314;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Gjellesvik et al.&lt;xref ref-type="bibr" rid="bibr47"&gt;47&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Norway&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Adult stroke survivors&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 36&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 34&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;21 M/15F&lt;/p&gt;&lt;p&gt;20 M/14F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;57.6 &amp;#177; 9.2&lt;/p&gt;&lt;p&gt;58.7 &amp;#177; 9.2&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;8 weeks&lt;/p&gt;&lt;p&gt;3 times/week&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9313;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td align="left"&gt;&lt;p&gt;Rivas-Campo et al.&lt;xref ref-type="bibr" rid="bibr48"&gt;48&lt;/xref&gt;&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Colombia&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Older adults&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;I: &lt;italic&gt;n&lt;/italic&gt; = 64&lt;/p&gt;&lt;p&gt;C: &lt;italic&gt;n&lt;/italic&gt; = 68&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;26 M/38F&lt;/p&gt;&lt;p&gt;27 M/41F&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;77.11 &amp;#177; 7.3&lt;/p&gt;&lt;p&gt;77.19 &amp;#177; 7.7&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;12 weeks&lt;/p&gt;&lt;p&gt;3 times/week&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;Parallel&lt;/p&gt;&lt;/td&gt;&lt;td align="left"&gt;&lt;p&gt;&amp;#9312;&amp;#9313;&amp;#9314;&lt;/p&gt;&lt;/td&gt;&lt;/tr&gt;&lt;/tbody&gt;&lt;/table&gt; </ephtml> </p> <p>I: intervention group; C: control group; M: males; F: females; ①: attention; ②: information processing; ③: executive function; ④: memory; ⑤: reaction time; NA: not available.</p> <hd id="AN0181944400-10">Risk of bias</hd> <p>The Cochrane Risk of Bias Assessment Tool was used to assess the quality of the included literature[<reflink idref="bib49" id="ref38">49</reflink>]. The risk of bias was assessed in six aspects: selective bias (randomisation, allocation concealment), measurement bias, follow-up bias, reporting bias, implementation bias and other bias, and the level of risk of bias was categorised into three levels: low risk of bias, high risk of bias and unknown risk of bias. The literature included in this study had a low risk of bias, see Fig. 2, and the publication bias of the included literature was examined by drawing a funnel plot, see Fig S1, S2 and S3 in Supplementary Material S2.</p> <p>Graph: Fig. 2 Risk of bias.</p> <hd id="AN0181944400-11">Meta-analysis results</hd> <p>Due to the limitations of the inclusion criteria, the included studies tested cognitive tasks focusing on information processing, executive function and memory. The number of studies testing attention[<reflink idref="bib34" id="ref39">34</reflink>],[<reflink idref="bib40" id="ref40">40</reflink>],[<reflink idref="bib48" id="ref41">48</reflink>] and reaction time[<reflink idref="bib42" id="ref42">42</reflink>] was small and heterogeneous (I<sups>2</sups> = 98%), and performing meta-analyses would have led to unreliable results. Therefore, in the present study, meta-analyses were performed only for information processing, executive function and memory.</p> <p> <bold>Information processing.</bold> The analysis of information processing showed a small improvement in information processing with HIIT compared to the control group (SMD = 0.33, 95% CI: 0.15 ~ 0.52, <emph>p</emph> = 0.0005). The results are shown in Fig. 3.</p> <p>Graph: Fig. 3 Forest diagram of information processing. A: Trail Making Test A; B: Digit Symbol Substitution Test; C: Stroop Neutral Test.</p> <p> <bold>Executive function.</bold> Analysis of executive function showed a small improvement in executive function with HIIT compared to controls (SMD = 0.38, 95% CI: 0.26 ~ 0.50, <emph>p</emph> &lt; 0.00001). Results are shown in Fig. 4.</p> <p>Graph: Fig. 4 Forest diagram of executive function. A: Trail Making Test B; B: Flanker Test; B1: Congruent; B2: Incongruent; C: Groton Maze Learning Task; D: Stroop Congruent; E: Stroop Interference; F: Stroop Incongruent; G: Digital Conversion Tasks.</p> <p> <bold>Memory.</bold> Analyses of memory showed a small improvement in memory with HIIT compared to controls (SMD = 0.21, 95% CI: 0.07 ~ 0.35, <emph>p</emph> = 0.004). The results are shown in Fig. 5.</p> <p>Graph: Fig. 5 Forest diagram of memory. A: One Card Learning Task; B: One Back Task; C: Two Back Task; D: Digit Span Forward; E: Wechsler Letter-Number Sequencing; F: Digit Span Backward; G: Sternberg Paradigm Test; G1: One-item; G2: Three-item; G3: Five-item; H: Verbal Learning Memory Test Recall; J: International Shopping List Task; K: Rey Osterrieth Fgure Immediate Recall; L: Rey Osterrieth Fgure Delayed Recall; M: Brief Visuospatial Memory Test; N: Wechsler Logical Memory Immediate Recall; P: Wechsler Logical Memory Delayed Recall; Q: International Shopping List Task Recall; R: Rey Auditory Verbal Memory Recall Test.</p> <hd id="AN0181944400-12">Subgroup analysis</hd> <p>To gain further insight into the impact of HIIT on cognitive performance across different age groups and intervention cycles, the present study analysed subgroups of participants based on age and intervention cycle. In accordance with the delineation method employed in previous studies, the age categories were defined as follows: 8 ~ 20 years, 20 ~ 30 years, 30 ~ 60 years, and 60 ~ years[<reflink idref="bib10" id="ref43">10</reflink>]. With regard to the intervention cycle, the classification was as follows: acute (i.e., completed either immediately or within one day), ≤ 8 weeks, and &gt; 8 weeks[<reflink idref="bib17" id="ref44">17</reflink>]. In order to better accommodate the heterogeneity between the subgroups, a random effects model was employed in the subsequent subgroup analyses.</p> <p> <bold>Age.</bold> Subgroup analyses were performed according to participant age. Compared to controls, HIIT had a moderate improvement in information processing for participants aged 60 ~ years (SMD = 0.59, 95% CI: 0.34 ~ 0.84, <emph>p</emph> &lt; 0.00001). However, there was no statistically significant effect on information processing for participants aged 8 ~ 20 years and 30 ~ 60 years. See Fig. 6. HIIT showed small improvements in executive function for participants aged 8 ~ 20 years (SMD = 0.37, 95% CI: 0.11 ~ 0.62, <emph>P</emph> = 0.004), 20 ~ 30 years (SMD = 0.42, 95% CI: 0.08 ~ 0.76, <emph>P</emph> = 0.01), 30 ~ 60 years (SMD = 0.41, 95% CI: 0.14 ~ 0.67, <emph>P</emph> = 0.003) and 60 ~ years (SMD = 0.35, 95% CI: 0.07 ~ 0.62, <emph>P</emph> = 0.01). See Fig. 7. In contrast, HIIT showed only a small improvement in memory for participants aged 30 ~ 60 years (SMD = 0.38, 95% CI: 0.19 ~ 0.57, <emph>p</emph> &lt; 0.0001). There was no statistically significant effect on memory for participants in other age groups. See Fig. 8.</p> <p>Graph: Fig. 6 Forest plot of the age-specific subgroups of the participants (information processing). A: Trail Making Test A; B: Digit Symbol Substitution Test; C: Stroop Neutral Test.</p> <p>Graph: Fig. 7 Forest plot of the age-specific subgroups of the participants (executive function). A: Trail Making Test B; B: Flanker Test; B1: Congruent; B2: Incongruent; C: Groton Maze Learning Task; D: Stroop Congruent; E: Stroop Interference; F: Stroop Incongruent; G: Digital Conversion Tasks.</p> <p>Graph: Fig. 8 Forest plot of the age-specific subgroups of the participants (memory). A: One Card Learning Task; B: One Back Task; C: Two Back Task; D: Digit Span Forward; E: Wechsler Letter-Number Sequencing; F: Digit Span Backward; G: Sternberg Paradigm Test; G1: One-item; G2: Three-item; G3: Five-item; H: Verbal Learning Memory Test Recall; J: International Shopping List Task; K: Rey Osterrieth Fgure Immediate Recall; L: Rey Osterrieth Fgure Delayed Recall; M: Brief Visuospatial Memory Test; N: Wechsler Logical Memory Immediate Recall; P: Wechsler Logical Memory Delayed Recall; Q: International Shopping List Task Recall; R: Rey Auditory Verbal Memory Recall Test.</p> <p> <bold>Intervention cycle.</bold> A subgroup analysis of HIIT intervention cycles showed that performing HIIT for &gt; 8 weeks had a moderate improvement in participants' information processing compared to the control group (SMD = 0.59, 95% CI: 0.34 ~ 0.84, <emph>p</emph> &lt; 0.00001). Acute and ≤ 8 weeks of HIIT had no statistically significant effect on participants' information processing. See Fig. 9. Acute (SMD = 0.33, 95% CI: 0.08 ~ 0.58, <emph>P</emph> = 0.01), ≤ 8 weeks (SMD = 0.45, 95% CI: 0.23 ~ 0.67, <emph>P</emph> &lt; 0.0001) and &gt; 8 weeks (SMD = 0.40, 95% CI: 0.17 ~ 0.63, <emph>P</emph> = 0.0008) of HIIT all showed small improvements. See Fig. 10. Acute HIIT had no statistically significant effect on participants' memory, ≤ 8 weeks (SMD = 0.23, 95% CI: 0.01 ~ 0.44, <emph>P</emph> = 0.04) and &gt; 8 weeks (SMD = 0.46, 95% CI: 0.16 ~ 0.75, <emph>P</emph> = 0.002) of HIIT had small improvements in participants' memory. See Fig. 11.</p> <p>Graph: Fig. 9 Forest plot of the subgroups of the intervention cycles (information processing). A: Trail Making Test A; B: Digit Symbol Substitution Test; C: Stroop Neutral Test.</p> <p>Graph: Fig. 10 Forest plot of the subgroups of the intervention cycles (executive function). A: Trail Making Test B; B: Flanker Test; B1: Congruent; B2: Incongruent; C: Groton Maze Learning Task; D: Stroop Congruent; E: Stroop Interference; F: Stroop Incongruent; G: Digital Conversion Tasks.</p> <p>Graph: Fig. 11 Forest plot of the subgroups of the intervention cycles (memory). A: One Card Learning Task; B: One Back Task; C: Two Back Task; D: Digit Span Forward; E: Wechsler Letter-Number Sequencing; F: Digit Span Backward; G: Sternberg Paradigm Test; G1: One-item; G2: Three-item; G3: Five-item; H: Verbal Learning Memory Test Recall; J: International Shopping List Task; K: Rey Osterrieth Fgure Immediate Recall; L: Rey Osterrieth Fgure Delayed Recall; M: Brief Visuospatial Memory Test; N: Wechsler Logical Memory Immediate Recall; P: Wechsler Logical Memory Delayed Recall; Q: International Shopping List Task Recall; R: Rey Auditory Verbal Memory Recall Test.</p> <hd id="AN0181944400-13">Discussion</hd> <p>The meta-analysis examined the effects of HIIT on information processing, executive function and memory in 20 studies from 6 electronic databases, while also analysing the moderating effects of two factors, age and intervention cycle. The results showed small improvements in information processing, executive function and memory with HIIT compared with controls. Of particular note was a slightly greater effect on improving executive function, a higher cognitive ability. These results provide evidence for HIIT as a highly effective exercise modality for improving cognitive function.</p> <p>Our results showed small improvements in executive function with HIIT in people of all ages. In particular, young people were able to improve even at their highest cognitive age. We also found that the effect of HIIT on executive function improved as the duration of the intervention increased. Executive function is a higher-order cognitive function that includes inhibitory control, working memory and cognitive flexibility, and has important implications across the lifespan[<reflink idref="bib50" id="ref45">50</reflink>]. Hsieh et al. showed improvements in inhibitory control with acute HIIT, and improvements in both inhibitory control and working memory with chronic HIIT[<reflink idref="bib51" id="ref46">51</reflink>]. Consistent with our findings, the benefits of chronic HIIT on executive function were greater compared to acute HIIT.</p> <p>We also found that HIIT moderately improved information processing in older adults over the age of 60. This may be because the neuroplasticity of the brain declines with age, and HIIT, as a strong stimulus, may have induced more significant changes in neuroplasticity in older adults, resulting in a positive effect[<reflink idref="bib52" id="ref47">52</reflink>]. Foong et al. found that information processing mediates psychosocial stress to some extent in older adults, and that a decline in information processing may further reduce their higher-level cognitive abilities[<reflink idref="bib53" id="ref48">53</reflink>]. Therefore, HIIT may be an intervention to improve information processing and reduce stress in older adults. Notably, acute and less than 8 weeks of HIIT had little effect on information processing, and more than 8 weeks of HIIT showed moderate improvement.Kendall et al. concluded that acute HIIT only increased levels of central arousal and had no effect on processing time[<reflink idref="bib42" id="ref49">42</reflink>]. Further research is needed to investigate the mechanisms by which chronic HIIT affects information processing.</p> <p>In addition, the study found a small improvement in memory with HIIT in middle-aged people aged 30 ~ 60 years, with no significant effect in other age groups. Acute HIIT had no effect on memory, less than 8 weeks of HIIT had a small improvement in memory, and more than 8 weeks of HIIT improved memory more significantly. This suggests that chronic HIIT is more effective at improving memory. In addition, Iuliano et al. found that exercise intensity was an important factor in improving memory, and that low-intensity exercise of similar duration did not improve memory[<reflink idref="bib54" id="ref50">54</reflink>]. It is important to prevent and delay age-related memory decline, and high-intensity exercise can alleviate age-related decline, induce higher levels of stress hormones, and increase the production of new neurons in the hippocampus to improve hippocampus-controlled learning and memory skills[<reflink idref="bib55" id="ref51">55</reflink>].</p> <p>There is a growing body of research on exercise interventions for cognition, and the potential mechanisms by which HIIT, as an emerging form of exercise, produces benefits are not fully understood, but some researchers have suggested that HIIT may work by producing different mechanisms to those found in other forms of exercise. HIIT induces the secretion of pro-angiogenic vascular endothelial growth factor (VEGF), a pro-angiogenic neovascular growth factor that promotes angiogenesis and the formation of new blood vessels[<reflink idref="bib56" id="ref52">56</reflink>]. Exercise-induced VEGF secretion and angiogenesis have also been shown to promote vasodilation via nitric oxide (NO), which plays a role in vascular remodelling. In addition, HIIT also promotes the production of free radicals and related reactive oxygen/nitrogen species (ROS/RNS), which play a role in maintaining cerebrovascular oxygen homeostasis at physiological levels and upregulate the expression of antioxidant enzymes, vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF) and insulin growth factor-1 (IGF-1)[<reflink idref="bib57" id="ref53">57</reflink>]. These pleiotropic factors promote neurogenesis, neuronal survival, neuroplasticity and cognitive performance[<reflink idref="bib58" id="ref54">58</reflink>].</p> <p>Overall, HIIT provided unexpected benefits on cognitive performance, especially in middle-aged and older populations with age-related cognitive decline. In addition, the intervention cycle was an important factor that had a profound effect on cognitive performance. The physiological mechanisms that produce benefits may also differ between intervention cycles. A single session of acute exercise is usually associated with transient improvements, i.e. increased endorphin release and increased cerebral blood flow, but with concomitant peripheral and central fatigue and therefore no significant improvement in cognitive performance[<reflink idref="bib59" id="ref55">59</reflink>]. Chronic exercise, on the other hand, produces physiological adaptations in the body and improves brain structure and function[<reflink idref="bib60" id="ref56">60</reflink>]. Therefore, chronic and sustained HIIT is feasible for non-pharmacological improvement of cognitive performance. Our findings contribute to a deeper understanding of the relationship between HIIT and cognitive performance and promote the use of HIIT in cognitive health, such as in school-based physical education programmes and clinical rehabilitation therapy.</p> <hd id="AN0181944400-14">Limitations and future works</hd> <p>Our meta-analysis has some limitations. There are relatively few studies of HIIT on cognitive performance, resulting in fewer included studies, smaller sample sizes in some studies, and the need for more studies with larger samples to support HIIT if it is to be extended to the general population. In addition, inconsistencies in the intervention methods (exercise protocol, exercise intensity, exercise frequency, exercise duration) of the included studies, inconsistencies in the health status of the participants, and inconsistencies in the testing methods of the outcome indicators are differences that may affect the reliability of the results. Therefore, future studies could investigate the different effects and biological mechanisms of HIIT programmes of different intensities and durations on specific domains of cognitive performance in populations with different health conditions, and identify and develop appropriate exercise programmes for different populations to improve cognitive performance and human health.</p> <hd id="AN0181944400-15">Conclusion</hd> <p>This meta-analysis showed that HIIT had a small effect on cognitive performance. In particular, the effect on executive function, a high-level cognitive ability, was greater. For children and adolescents, HIIT is effective in improving executive function, and higher levels of executive function allow for flexible coordination, optimisation and control of cognitive problem-solving processes, leading to improved thinking skills and academic performance, which is of great interest to educators. For middle-aged and older adults, HIIT improves information processing, executive function and memory, which helps to reduce cognitive degenerative diseases. Additionally, chronic HIIT has been demonstrated to exert a more pronounced influence on cognitive performance than acute HIIT. It is recommended that HIIT, as an emerging and highly regarded exercise intervention, should have a greater focus on cognitive and mental health in the context of the current research hotspots in the field of health that focus on "adolescents" and "aging" as objects of study.</p> <hd id="AN0181944400-16">Author contributions</hd> <p>K.L., H.W. and L.W. conceived this work. K.L. undertook the formal analysis. L.W., J.Z., X.Y. and Y.W. undertook the investigation. K.L.and W.Z. obtained resources. K.L. and W.Z. undertook data curation. H.W. and L.W. supervised the project. K.L., W.Z., C.L., J.Z., X.Y., Y.W., Y.T., L.W., L.W. and H.W. were involved in reviewing and editing.</p> <hd id="AN0181944400-17">Data availability</hd> <p>Data is provided within the manuscript or supplementary information files.</p> <hd id="AN0181944400-18">Declarations</hd> <p></p> <hd id="AN0181944400-19">Competing interests</hd> <p>The authors declare no competing interests.</p> <hd id="AN0181944400-20">Publisher's note</hd> <p>Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.</p> <ref id="AN0181944400-21"> <title> References </title> <blist> <bibl id="bib1" idref="ref1" type="bt">1</bibl> <bibtext> Jin K, Simpkins JW, Ji X, Leis M, Stambler I. The critical need to promote research of aging and aging-related diseases to improve health and longevity of the elderly population. Aging Dis. 2014; 6; 1: 1-5. 10.14336/AD.2014.1210. 25657847. 4306469</bibtext> </blist> <blist> <bibl id="bib2" idref="ref2" type="bt">2</bibl> <bibtext> Zeidan F, Johnson SK, Diamond BJ, David Z, Goolkasian P. Mindfulness meditation improves cognition: Evidence of brief mental training. Conscious. Cogn. 2010; 19; 2: 597-605. 10.1016/j.concog.2010.03.014. 20363650</bibtext> </blist> <blist> <bibl id="bib3" idref="ref3" type="bt">3</bibl> <bibtext> Martínez-Lapiscina EH. Mediterranean diet improves cognition: The PREDIMED-NAVARRA randomised trial. J. Neurol. Neurosurg. Psychiatry. 2013; 84; 12: 1318-1325. 10.1136/jnnp-2012-304792. 23670794. 0729.15009</bibtext> </blist> <blist> <bibl id="bib4" idref="ref4" type="bt">4</bibl> <bibtext> Ruegsegger GN, Booth FW. Health benefits of Exercise. Cold Spring Harb Perspect. Med. 2018; 8; 7: a029694. 10.1101/cshperspect.a029694. 28507196. 6027933. 1382.83060</bibtext> </blist> <blist> <bibl id="bib5" idref="ref5" type="bt">5</bibl> <bibtext> Nystoriak MA, Bhatnagar A. Cardiovascular effects and benefits of Exercise. Front. Cardiovasc. Med. 2018; 5: 135. 10.3389/fcvm.2018.00135. 30324108. 6172294. 1434.62174</bibtext> </blist> <blist> <bibl id="bib6" idref="ref6" type="bt">6</bibl> <bibtext> Suchomel TJ, Nimphius S, Bellon CR, Stone MH. The importance of muscular strength: Training considerations. Sports Med. 2018; 48; 4: 765-785. 10.1007/s40279-018-0862-z. 29372481. 0016.18201</bibtext> </blist> <blist> <bibl id="bib7" idref="ref7" type="bt">7</bibl> <bibtext> Kelley, G. A, Kelley, K. S. &amp; Pate, R. R. Effects of exercise on BMI z-score in overweight and obese children and adolescents: A systematic review with meta-analysis. BMC Pediatr.14 (2014). https://doi.org/10.1186/1471-2431-14-225</bibtext> </blist> <blist> <bibl id="bib8" idref="ref8" type="bt">8</bibl> <bibtext> Li JW, O'Connor H, O'Dwyer N, Orr R. The effect of acute and chronic exercise on cognitive function and academic performance in adolescents: A systematic review. J. Sci. Med. Sport. 2017; 20; 9: 841-848. 10.1016/j.jsams.2016.11.025. 28185806</bibtext> </blist> <blist> <bibl id="bib9" idref="ref9" type="bt">9</bibl> <bibtext> Smith PJ. Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosom. Med. 2010; 72; 3: 239-252. 10.1097/PSY.0b013e3181d14633. 20223924. 2897704. 0717.76025</bibtext> </blist> <blist> <bibtext> Chang YK, Labban JD, Gapin JI, Etnier JL. The effects of acute exercise on cognitive performance: A meta-analysis [published correction appears in Brain Res. 2012;1470:159]. Brain Res. 2012; 1453: 87-101. 10.1016/j.brainres.2012.02.068. 22480735</bibtext> </blist> <blist> <bibtext> Christiansen L. Effects of Exercise on Cognitive performance in children and adolescents with ADHD: Potential mechanisms and evidence-based recommendations. J. Clin. Med. 2019; 8; 6: 841. 10.3390/jcm8060841. 31212854. 6617109. 1418.30018</bibtext> </blist> <blist> <bibtext> Wrann CD. Exercise induces hippocampal BDNF through a PGC-1α/FNDC5 pathway. Cell. Metab. 2013; 18; 5: 649-659. 10.1016/j.cmet.2013.09.008. 24120943. 3980968</bibtext> </blist> <blist> <bibtext> Pelletier L, Shanmugasegaram S, Patten SB, Demers A. Self-management of mood and/or anxiety disorders through physical activity/exercise. Autogestion des troubles de L'humeur et/ou d'anxiété par l'activité physique et l'exercice. Health Promot Chronic Dis. Prev. Can. 2017; 37; 5: 149-159. 10.24095/hpcdp.37.5.03. 28493659</bibtext> </blist> <blist> <bibtext> Jackson EM. Stress relief: The role of exercise in stress management. ACSMS Health Fit. J. 2013; 17; 3: 14-19. 10.1249/fit.0b013e31828cb1c9. 1348.60116</bibtext> </blist> <blist> <bibtext> Mikkelsen K, Stojanovska L, Polenakovic M, Bosevski M, Apostolopoulos V. Exercise and mental health. Maturitas. 2017; 106: 48-56. 10.1016/j.maturitas.2017.09.003. 29150166</bibtext> </blist> <blist> <bibtext> Landrigan JF, Bell T, Crowe M, Clay OJ, Mirman D. Lifting cognition: A meta-analysis of effects of resistance exercise on cognition. Psychol. Res. 2020; 84; 5: 1167-1183. 10.1007/s00426-019-01145-x. 30627769</bibtext> </blist> <blist> <bibtext> Costigan SA, Eather N, Plotnikoff RC, Taaffe DR, Lubans DR. High-intensity interval training for improving health-related fitness in adolescents: A systematic review and meta-analysis. Br. J. Sports Med. 2015; 49; 19: 1253-1261. 10.1136/bjsports-2014-094490. 26089322</bibtext> </blist> <blist> <bibtext> Buchheit M, Laursen PB. High-intensity interval training, solutions to the programming puzzle: Part I: Cardiopulmonary emphasis. Sports Med. 2013; 43; 5: 313-338. 10.1007/s40279-013-0029-x. 23539308</bibtext> </blist> <blist> <bibtext> Bherer L, Erickson KI, Liu-Ambrose T. A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. J. Aging Res. 2013; 2013: 657508. 10.1155/2013/657508. 24102028. 3786463</bibtext> </blist> <blist> <bibtext> Logan GR, Harris N, Duncan S, Schofield G. A review of adolescent high-intensity interval training. Sports Med. 2014; 44; 8: 1071-1085. 10.1007/s40279-014-0187-5. 24743929. 0757.90007</bibtext> </blist> <blist> <bibtext> Northey JM. Cognition in breast cancer survivors: A pilot study of interval and continuous exercise. J. Sci. Med. Sport. 2019; 22; 5: 580-585. 10.1016/j.jsams.2018.11.026. 30554923. 07551453</bibtext> </blist> <blist> <bibtext> Liu, J. et al. The effect of exercise on cerebral blood flow and executive function among young adults: A double-blinded randomized controlled trial. Sci. Rep.13(1), 8269 (2023). https://doi.org/10.1038/s41598-023-33063-9</bibtext> </blist> <blist> <bibtext> Chua T, Aziz AR, Chia M. Four minutes of sprint interval training had no acute effect on improving alertness, mood, and memory of female primary school children and secondary school adolescents: A Randomized Controlled Trial. J. Funct. Morphol. Kinesiol. 2020; 5; 4: 92. 10.3390/jfmk5040092. 33467307. 7804884</bibtext> </blist> <blist> <bibtext> Page, M. J. et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev.10(1), 89 (2021). https://doi.org/10.1186/s13643-021-01626-4</bibtext> </blist> <blist> <bibtext> Balota, D. A. &amp; Marsh, E. J. (eds) Cognitive Psychology: Key Readings (Psychology, 2004).</bibtext> </blist> <blist> <bibtext> Lezak, M. D. Neuropsychological Assessment (Oxford University Press, 2004).</bibtext> </blist> <blist> <bibtext> Lamberts, K. &amp; Goldstone, R. L. (eds) Handbook of Cognition (Sage, 2005).</bibtext> </blist> <blist> <bibtext> Gallardo-Gómez D, Richardson R, Dwan K. Standardized mean differences in meta-analysis: A tutorial. Cochrane Evid. Synth. Methods. 2024; 2: e12047. 10.1002/cesm.12047</bibtext> </blist> <blist> <bibtext> Borenstein M, Hedges LV, Higgins JP, Rothstein HR. A basic introduction to fixed-effect and random-effects models for meta-analysis. Res. Synth. Methods. 2010; 1; 2: 97-111. 10.1002/jrsm.12. 26061376. 1178.62001</bibtext> </blist> <blist> <bibtext> Tufanaru C, Munn Z, Stephenson M, Aromataris E. Fixed or random effects meta-analysis? Common methodological issues in systematic reviews of effectiveness. Int. J. Evid. Based Healthc. 2015; 13; 3: 196-207. 10.1097/XEB.0000000000000065. 26355603. 0627.20041</bibtext> </blist> <blist> <bibtext> Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002; 21; 11: 1539-1558. 10.1002/sim.1186. 12111919. 1025.76034</bibtext> </blist> <blist> <bibtext> Costigan SA, Eather N, Plotnikoff RC, Hillman CH, Lubans DR. High-intensity interval training for cognitive and mental health in adolescents. Med. Sci. Sports Exerc. 2016; 48; 10: 1985-1993. 10.1249/MSS.0000000000000993. 27187097</bibtext> </blist> <blist> <bibtext> Connolly LJ. Effects of self-paced interval and continuous training on health markers in women. Eur. J. Appl. Physiol. 2017; 117; 11: 2281-2293. 10.1007/s00421-017-3715-9. 28932907. 5640747. 1405.05073</bibtext> </blist> <blist> <bibtext> Mezcua-Hidalgo A, Ruiz-Ariza A, Suárez-Manzano S, Martínez-López EJ. 48-Hour effects of Monitored Cooperative High-Intensity interval training on adolescent cognitive functioning. Percept. Mot Skills. 2019; 126; 2: 202-222. 10.1177/0031512518825197. 30665339</bibtext> </blist> <blist> <bibtext> Coetsee C, Terblanche E. The effect of three different exercise training modalities on cognitive and physical function in a healthy older population. Eur. Rev. Aging Phys. Act. 2017; 14: 13. 10.1186/s11556-017-0183-5. 28811842. 5553712</bibtext> </blist> <blist> <bibtext> Brown DMY, Bray SR. Acute effects of continuous and high-intensity interval exercise on executive function. J. Appl. Biobehav Res. 2018; 23; 3: e12121. 10.1111/jabr.12121. 1404.82085</bibtext> </blist> <blist> <bibtext> Lee JS, Boafo A, Greenham S, Longmuir PE. The effect of high-intensity interval training on inhibitory control in adolescents hospitalized for a mental illness. Ment Health Phys. Act. 2019; 17: 100298. 10.1016/j.mhpa.2019.100298</bibtext> </blist> <blist> <bibtext> Mekari S. Effect of high intensity interval training compared to continuous training on cognitive performance in young healthy adults: a pilot study. Brain Sci. 2020; 10; 2: 81. 10.3390/brainsci10020081. 32033006. 7071608</bibtext> </blist> <blist> <bibtext> Hatch LM. Effect of differing durations of high-intensity intermittent activity on cognitive function in adolescents. Int. J. Environ. Res. Public. Health. 2021; 18; 21: 11594. 10.3390/ijerph182111594. 34770104. 8583632. 1525.54024</bibtext> </blist> <blist> <bibtext> Zimmer P. High-intensity interval exercise improves cognitive performance and reduces matrix metalloproteinases-2 serum levels in persons with multiple sclerosis: A randomized controlled trial. Mult Scler. 2018; 24; 12: 1635-1644. 10.1177/1352458517728342. 28825348. 1420.32018</bibtext> </blist> <blist> <bibtext> Amorim Oliveira GT. Effects of 12 weeks of high-intensity interval, moderate-intensity continuous and self-selected intensity exercise training protocols on cognitive inhibitory control in overweight/obese adults: A randomized trial. Eur. J. Sport Sci. 2022; 22; 11: 1724-1733. 10.1080/17461391.2021.1969433. 34429030. 1350.74027</bibtext> </blist> <blist> <bibtext> Kendall BJ, Siekirk NJ, Lai Q. Effects of acute high-intensity interval training on information processing speed. J. Strength. Cond Res. 2022; 36; 11: 3081-3086. 10.1519/JSC.0000000000004029. 34346910. 1497.94176</bibtext> </blist> <blist> <bibtext> de Lima NS. Moderate-intensity continuous training and high-intensity interval training improve cognition, and BDNF levels of middle-aged overweight men. Metab. Brain Dis. 2022; 37; 2: 463-471. 10.1007/s11011-021-00859-5. 34762211. 1403.53052</bibtext> </blist> <blist> <bibtext> Wang X, Liu Z, Zhang H, Ji C. Effects of high-intensity interval training on executive functions in college students: Evidence from different doses. Brain Sci. 2023; 13; 4: 571. 10.3390/brainsci13040571. 37190536. 10136687. 1394.65157Published 2023 Mar 28</bibtext> </blist> <blist> <bibtext> Kao SC, Baumgartner N, Noh K, Wang CH, Schmitt S. Acute effects of intense interval versus aerobic exercise on children's behavioral and neuroelectric measures of inhibitory control. J. Sci. Med. Sport. 2023; 26; 6: 316-321. 10.1016/j.jsams.2023.05.003. 37277231</bibtext> </blist> <blist> <bibtext> Zhu Y, Sun F, Chiu MM, Siu AY. Effects of high-intensity interval exercise and moderate-intensity continuous exercise on executive function of healthy young males. Physiol. Behav. 2021; 239: 113505. 10.1016/j.physbeh.2021.113505. 34153324</bibtext> </blist> <blist> <bibtext> Gjellesvik TI. Effects of high-intensity interval training after stroke (the HIIT Stroke Study) on physical and cognitive function: A Multicenter Randomized Controlled Trial. Arch. Phys. Med. Rehabil. 2021; 102; 9: 1683-1691. 10.1016/j.apmr.2021.05.008. 34102144. 1446.05036</bibtext> </blist> <blist> <bibtext> Rivas-Campo Y. Enhancing cognition in older adults with mild cognitive impairment through high-intensity functional training: A single-blind randomized controlled trial. J. Clin. Med. 2023; 12; 12: 4049. 10.3390/jcm12124049. 37373742. 10299582. 07848114Published 2023 Jun 14</bibtext> </blist> <blist> <bibtext> Higgins, J. P, Savović, J, Page, M. J, Elbers, R. G. &amp; Sterne, J. A. Assessing risk of bias in a randomized trial. Cochrane Handb. Syst. Rev. Intervent. 205–228. https://doi.org/10.1002/9781119536604.ch8 (2019).</bibtext> </blist> <blist> <bibtext> Diamond A. Executive functions. Annu. Rev. Psychol. 2013; 64: 135-168. 10.1146/annurev-psych-113011-143750. 23020641. 0302.34060</bibtext> </blist> <blist> <bibtext> Hsieh SS. Systematic review of the acute and chronic effects of high-intensity interval training on executive function across the lifespan. J. Sports Sci. 2021; 39; 1: 10-22. 10.1080/02640414.2020.1803630. 32780634. 1465.81007</bibtext> </blist> <blist> <bibtext> Blackmore, D. G. et al. Long-term improvement in hippocampal-dependent learning ability in healthy, aged individuals following high intensity interval training. Aging Dis. Published Online July. 8https://doi.org/10.14336/AD.2024.0642 (2024).</bibtext> </blist> <blist> <bibtext> Foong HF, Hamid TA, Ibrahim R, Haron SA. Information processing speed as a mediator between psychosocial stress and global cognition in older adults. Psychogeriatrics. 2018; 18; 1: 21-29. 10.1111/psyg.12279. 29372603</bibtext> </blist> <blist> <bibtext> Iuliano E. Twelve-week Exercise influences memory complaint but not memory performance in older adults: A randomized controlled study. J. Aging Phys. Act. 2017; 25; 4: 612-620. 10.1123/japa.2016-0249. 28290764. 07859326</bibtext> </blist> <blist> <bibtext> Kovacevic A, Fenesi B, Paolucci E, Heisz JJ. The effects of aerobic exercise intensity on memory in older adults. Appl. Physiol. Nutr. Metab. 2020; 45; 6: 591-600. 10.1139/apnm-2019-0495. 31665610</bibtext> </blist> <blist> <bibtext> Morland C. Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1. Nat. Commun. 2017; 8: 15557. 2017NatCo.815557M. 10.1038/ncomms15557. 28534495. 5457513. 1516.92010</bibtext> </blist> <blist> <bibtext> Calverley TA. HIITing the brain with exercise: Mechanisms, consequences and practical recommendations. J. Physiol. 2020; 598; 13: 2513-2530. 10.1113/JP275021. 32347544. 0709.73628</bibtext> </blist> <blist> <bibtext> Tari AR. Are the neuroprotective effects of exercise training systemically mediated?. Prog Cardiovasc. Dis. 2019; 62; 2: 94-101. 10.1016/j.pcad.2019.02.003. 30802460. 0914.68056</bibtext> </blist> <blist> <bibtext> Lubans D. Physical activity for cognitive and mental health in youth: A systematic review of mechanisms. Pediatrics. 2016; 138; 3: e20161642. 10.1542/peds.2016-1642. 27542849</bibtext> </blist> <blist> <bibtext> de Greeff JW, Bosker RJ, Oosterlaan J, Visscher C, Hartman E. Effects of physical activity on executive functions, attention and academic performance in preadolescent children: a meta-analysis. J. Sci. Med. Sport. 2018; 21; 5: 501-507. 10.1016/j.jsams.2017.09.595. 29054748</bibtext> </blist> </ref> <aug> <p>By Kaihang Liu; Wei Zhao; Congcong Li; Ying Tian; Lijuan Wang; Jingyi Zhong; Xu Yan; Yezheng Wang; Liyan Wang and Hongbiao Wang</p> <p>Reported by Author; Author; Author; Author; Author; Author; Author; Author; Author; Author</p> </aug> <nolink nlid="nl1" bibid="bib10" firstref="ref10"></nolink> <nolink nlid="nl2" bibid="bib11" firstref="ref11"></nolink> <nolink nlid="nl3" bibid="bib12" firstref="ref12"></nolink> <nolink nlid="nl4" bibid="bib13" firstref="ref13"></nolink> <nolink nlid="nl5" bibid="bib14" firstref="ref14"></nolink> <nolink nlid="nl6" bibid="bib15" firstref="ref15"></nolink> <nolink nlid="nl7" bibid="bib16" firstref="ref17"></nolink> <nolink nlid="nl8" bibid="bib17" firstref="ref18"></nolink> <nolink nlid="nl9" bibid="bib18" firstref="ref19"></nolink> <nolink nlid="nl10" bibid="bib19" firstref="ref20"></nolink> <nolink nlid="nl11" bibid="bib20" firstref="ref21"></nolink> <nolink nlid="nl12" bibid="bib21" firstref="ref22"></nolink> <nolink nlid="nl13" bibid="bib22" firstref="ref23"></nolink> <nolink nlid="nl14" bibid="bib23" firstref="ref24"></nolink> <nolink nlid="nl15" bibid="bib24" firstref="ref25"></nolink> <nolink nlid="nl16" bibid="bib25" firstref="ref27"></nolink> <nolink nlid="nl17" bibid="bib26" firstref="ref28"></nolink> <nolink nlid="nl18" bibid="bib27" firstref="ref29"></nolink> <nolink nlid="nl19" bibid="bib28" firstref="ref31"></nolink> <nolink nlid="nl20" bibid="bib29" firstref="ref32"></nolink> <nolink nlid="nl21" bibid="bib30" firstref="ref33"></nolink> <nolink nlid="nl22" bibid="bib50" firstref="ref35"></nolink> <nolink nlid="nl23" bibid="bib75" firstref="ref36"></nolink> <nolink nlid="nl24" bibid="bib31" firstref="ref37"></nolink> <nolink nlid="nl25" bibid="bib49" firstref="ref38"></nolink> <nolink nlid="nl26" bibid="bib34" firstref="ref39"></nolink> <nolink nlid="nl27" bibid="bib40" firstref="ref40"></nolink> <nolink nlid="nl28" bibid="bib48" firstref="ref41"></nolink> <nolink nlid="nl29" bibid="bib42" firstref="ref42"></nolink> <nolink nlid="nl30" bibid="bib51" firstref="ref46"></nolink> <nolink nlid="nl31" bibid="bib52" firstref="ref47"></nolink> <nolink nlid="nl32" bibid="bib53" firstref="ref48"></nolink> <nolink nlid="nl33" bibid="bib54" firstref="ref50"></nolink> <nolink nlid="nl34" bibid="bib55" firstref="ref51"></nolink> <nolink nlid="nl35" bibid="bib56" firstref="ref52"></nolink> <nolink nlid="nl36" bibid="bib57" firstref="ref53"></nolink> <nolink nlid="nl37" bibid="bib58" firstref="ref54"></nolink> <nolink nlid="nl38" bibid="bib59" firstref="ref55"></nolink> <nolink nlid="nl39" bibid="bib60" firstref="ref56"></nolink> CustomLinks: – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=20452322&ISBN=&volume=14&issue=1&date=20241001&spage=1&pages=1-17&title=Scientific Reports&atitle=Axial%20compression%20stress-strain%20relationship%20of%20lithium%20slag%20rubber%20concrete&aulast=Kaiwei%20Liu&id=DOI:10.1038/s41598-024-73566-7 Name: Full Text Finder (for New FTF UI) (s8985755) Category: fullText Text: Find It @ SCU Libraries MouseOverText: Find It @ SCU Libraries – Url: https://doaj.org/article/bb82dc28cec2483eb6a992505288b053 Name: EDS - DOAJ (s8985755) Category: fullText Text: View record from DOAJ MouseOverText: View record from DOAJ |
---|---|
Header | DbId: edsdoj DbLabel: Directory of Open Access Journals An: edsdoj.bb82dc28cec2483eb6a992505288b053 RelevancyScore: 1063 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1063.01672363281 |
IllustrationInfo | |
Items | – Name: Title Label: Title Group: Ti Data: Axial compression stress-strain relationship of lithium slag rubber concrete – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Kaiwei+Liu%22">Kaiwei Liu</searchLink><br /><searchLink fieldCode="AR" term="%22Jiongfeng+Liang%22">Jiongfeng Liang</searchLink><br /><searchLink fieldCode="AR" term="%22Caisen+Wang%22">Caisen Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Xuegang+Wang%22">Xuegang Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Jicheng+Liu%22">Jicheng Liu</searchLink> – Name: TitleSource Label: Source Group: Src Data: Scientific Reports, Vol 14, Iss 1, Pp 1-17 (2024) – Name: Publisher Label: Publisher Information Group: PubInfo Data: Nature Portfolio, 2024. – Name: DatePubCY Label: Publication Year Group: Date Data: 2024 – Name: Subset Label: Collection Group: HoldingsInfo Data: LCC:Medicine<br />LCC:Science – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Axial+compressive%22">Axial compressive</searchLink><br /><searchLink fieldCode="DE" term="%22Failure+mechanism%22">Failure mechanism</searchLink><br /><searchLink fieldCode="DE" term="%22Lithium+slag%22">Lithium slag</searchLink><br /><searchLink fieldCode="DE" term="%22Prediction+model%22">Prediction model</searchLink><br /><searchLink fieldCode="DE" term="%22Rubber+concrete%22">Rubber concrete</searchLink><br /><searchLink fieldCode="DE" term="%22Stress-strain+relationship%22">Stress-strain relationship</searchLink><br /><searchLink fieldCode="DE" term="%22Medicine%22">Medicine</searchLink><br /><searchLink fieldCode="DE" term="%22Science%22">Science</searchLink> – Name: Abstract Label: Description Group: Ab Data: Abstract Replacing cement with lithium slag and fine aggregate with rubber in concrete solves waste disposal, reduces material consumption, boosts sustainability, and enhances concrete performance. A set of prismatic concrete specimens with varying proportions were designed and experimentally tested in order to study the compressive stress-strain behavior of lithium slag rubber concrete (LSRC). The main factors affecting the specimens were lithium slag substitution ratio (S L=0%, 10%, 20%, 30%) and rubber substitution ratio (S R=0%, 5%, 10%, 15%). The results demonstrated that the LSRC exhibited good integrity during the damage. Furthermore, the incorporation of lithium slag (LS) was found to effectively compensate for the reduction in compressive strength due to the incorporation of rubber. When 10% of the fine aggregate was replaced with rubber and 20% of the cement was substituted with lithium slag, the axial compressive strength, elastic modulus, and peak strain of the tested specimens increased by 21.57%, 6.92%, and 17.26%, respectively. Compared with ordinary concrete, LSRC has good toughness, impact resistance and durability with minimal loss of strength, and has broad application prospects in engineering fields (such as airports, highways, housing expansion joints, concrete floors and railway concrete sleepers, etc.). Based on the experimental data, simplified modified equations to predict the compressive strength, elastic modulus, peak strain and axial stress-strain constitutive model of LSRC were proposed, so as to promote the development of LSRC. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article – Name: Format Label: File Description Group: SrcInfo Data: electronic resource – Name: Language Label: Language Group: Lang Data: English – Name: ISSN Label: ISSN Group: ISSN Data: 2045-2322 – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://doaj.org/toc/2045-2322 – Name: DOI Label: DOI Group: ID Data: 10.1038/s41598-024-73566-7 – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/bb82dc28cec2483eb6a992505288b053" linkWindow="_blank">https://doaj.org/article/bb82dc28cec2483eb6a992505288b053</link> – Name: AN Label: Accession Number Group: ID Data: edsdoj.bb82dc28cec2483eb6a992505288b053 |
PLink | https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.bb82dc28cec2483eb6a992505288b053 |
RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1038/s41598-024-73566-7 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 17 StartPage: 1 Subjects: – SubjectFull: Axial compressive Type: general – SubjectFull: Failure mechanism Type: general – SubjectFull: Lithium slag Type: general – SubjectFull: Prediction model Type: general – SubjectFull: Rubber concrete Type: general – SubjectFull: Stress-strain relationship Type: general – SubjectFull: Medicine Type: general – SubjectFull: Science Type: general Titles: – TitleFull: Axial compression stress-strain relationship of lithium slag rubber concrete Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Kaiwei Liu – PersonEntity: Name: NameFull: Jiongfeng Liang – PersonEntity: Name: NameFull: Caisen Wang – PersonEntity: Name: NameFull: Xuegang Wang – PersonEntity: Name: NameFull: Jicheng Liu IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 10 Type: published Y: 2024 Identifiers: – Type: issn-print Value: 20452322 Numbering: – Type: volume Value: 14 – Type: issue Value: 1 Titles: – TitleFull: Scientific Reports Type: main |
ResultId | 1 |