Modelling background error correlations with spatial deformations: a case study

Bibliographic Details
Title: Modelling background error correlations with spatial deformations: a case study
Authors: Raphaël Legrand, Yann Michel
Source: Tellus: Series A, Dynamic Meteorology and Oceanography, Vol 66, Iss 0, Pp 1-15 (2014)
Publisher Information: Stockholm University Press, 2014.
Publication Year: 2014
Collection: LCC:Oceanography
LCC:Meteorology. Climatology
Subject Terms: data assimilation, anisotropy, background error, ensemble, spatial deformation, Oceanography, GC1-1581, Meteorology. Climatology, QC851-999
More Details: A long-term goal in variational data assimilation is to improve the anisotropy of background error correlations. One way to achieve anisotropic correlations is to introduce spatial deformations. This deformation can be specified a priori for instance by using the geostrophic transform (GT) as introduced by Desroziers (1997). The deformation can also be estimated from a purely statistical point of view (Michel, 2013a). The aim of this study is to evaluate the performance of such spatial deformation techniques for the use of background error modelling. A large ensemble of variational assimilations with perturbed observations is set up on a case study with the global ARPEGE model. An anisotropy index and a length scale diagnostic are defined to compare objectively the effectiveness of the deformations. This effectiveness is measured as the ability of the inverse spatial deformations to make the correlations more isotropic or more homogeneous. The results are shown to depend on the vertical level and on the variable. Generally, the statistical deformation is able to reduce the anisotropy while the GT is giving much smaller improvements that are, in this case study, confined to the frontal area of an extratropical cyclone.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1600-0870
Relation: http://www.tellusa.net/index.php/tellusa/article/download/23984/pdf_1; https://doaj.org/toc/1600-0870
DOI: 10.3402/tellusa.v66.23984
Access URL: https://doaj.org/article/9e3d2250ee8a4c6180cc5fbf99dcc24e
Accession Number: edsdoj.9e3d2250ee8a4c6180cc5fbf99dcc24e
Database: Directory of Open Access Journals
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=16000870&ISBN=&volume=66&issue=0&date=20141001&spage=1&pages=1-15&title=Tellus: Series A, Dynamic Meteorology and Oceanography&atitle=Modelling%20background%20error%20correlations%20with%20spatial%20deformations%3A%20a%20case%20study&aulast=Rapha%C3%ABl%20Legrand&id=DOI:10.3402/tellusa.v66.23984
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/9e3d2250ee8a4c6180cc5fbf99dcc24e
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.9e3d2250ee8a4c6180cc5fbf99dcc24e
RelevancyScore: 880
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 879.638000488281
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Modelling background error correlations with spatial deformations: a case study
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Raphaël+Legrand%22">Raphaël Legrand</searchLink><br /><searchLink fieldCode="AR" term="%22Yann+Michel%22">Yann Michel</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Tellus: Series A, Dynamic Meteorology and Oceanography, Vol 66, Iss 0, Pp 1-15 (2014)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Stockholm University Press, 2014.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2014
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Oceanography<br />LCC:Meteorology. Climatology
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22data+assimilation%22">data assimilation</searchLink><br /><searchLink fieldCode="DE" term="%22anisotropy%22">anisotropy</searchLink><br /><searchLink fieldCode="DE" term="%22background+error%22">background error</searchLink><br /><searchLink fieldCode="DE" term="%22ensemble%22">ensemble</searchLink><br /><searchLink fieldCode="DE" term="%22spatial+deformation%22">spatial deformation</searchLink><br /><searchLink fieldCode="DE" term="%22Oceanography%22">Oceanography</searchLink><br /><searchLink fieldCode="DE" term="%22GC1-1581%22">GC1-1581</searchLink><br /><searchLink fieldCode="DE" term="%22Meteorology%2E+Climatology%22">Meteorology. Climatology</searchLink><br /><searchLink fieldCode="DE" term="%22QC851-999%22">QC851-999</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: A long-term goal in variational data assimilation is to improve the anisotropy of background error correlations. One way to achieve anisotropic correlations is to introduce spatial deformations. This deformation can be specified a priori for instance by using the geostrophic transform (GT) as introduced by Desroziers (1997). The deformation can also be estimated from a purely statistical point of view (Michel, 2013a). The aim of this study is to evaluate the performance of such spatial deformation techniques for the use of background error modelling. A large ensemble of variational assimilations with perturbed observations is set up on a case study with the global ARPEGE model. An anisotropy index and a length scale diagnostic are defined to compare objectively the effectiveness of the deformations. This effectiveness is measured as the ability of the inverse spatial deformations to make the correlations more isotropic or more homogeneous. The results are shown to depend on the vertical level and on the variable. Generally, the statistical deformation is able to reduce the anisotropy while the GT is giving much smaller improvements that are, in this case study, confined to the frontal area of an extratropical cyclone.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 1600-0870
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: http://www.tellusa.net/index.php/tellusa/article/download/23984/pdf_1; https://doaj.org/toc/1600-0870
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.3402/tellusa.v66.23984
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/9e3d2250ee8a4c6180cc5fbf99dcc24e" linkWindow="_blank">https://doaj.org/article/9e3d2250ee8a4c6180cc5fbf99dcc24e</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.9e3d2250ee8a4c6180cc5fbf99dcc24e
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.9e3d2250ee8a4c6180cc5fbf99dcc24e
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.3402/tellusa.v66.23984
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 15
        StartPage: 1
    Subjects:
      – SubjectFull: data assimilation
        Type: general
      – SubjectFull: anisotropy
        Type: general
      – SubjectFull: background error
        Type: general
      – SubjectFull: ensemble
        Type: general
      – SubjectFull: spatial deformation
        Type: general
      – SubjectFull: Oceanography
        Type: general
      – SubjectFull: GC1-1581
        Type: general
      – SubjectFull: Meteorology. Climatology
        Type: general
      – SubjectFull: QC851-999
        Type: general
    Titles:
      – TitleFull: Modelling background error correlations with spatial deformations: a case study
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Raphaël Legrand
      – PersonEntity:
          Name:
            NameFull: Yann Michel
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 10
              Type: published
              Y: 2014
          Identifiers:
            – Type: issn-print
              Value: 16000870
          Numbering:
            – Type: volume
              Value: 66
            – Type: issue
              Value: 0
          Titles:
            – TitleFull: Tellus: Series A, Dynamic Meteorology and Oceanography
              Type: main
ResultId 1