Efficient Carbon‐Based Optoelectronic Synapses for Dynamic Visual Recognition

Bibliographic Details
Title: Efficient Carbon‐Based Optoelectronic Synapses for Dynamic Visual Recognition
Authors: Wenhao Liu, Jihong Wang, Jiahao Guo, Lin Wang, Zhen Gu, Huifeng Wang, Haiping Fang
Source: Advanced Science, Vol 12, Iss 11, Pp n/a-n/a (2025)
Publisher Information: Wiley, 2025.
Publication Year: 2025
Collection: LCC:Science
Subject Terms: 2D heterostructure, C60, dynamic vision, graphene oxide, optoelectronic synapse, Science
More Details: Abstract The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility. However, conventional synthesis methods are complex and environmentally harmful, leading to issues such as poor stability and low charge transfer efficiency. Therefore, it is imperative to develop a more efficient, convenient, and eco‐friendly method for preparing layered heterojunction materials. Here, a one‐step ultrasonic method is employed to mix fullerene (C60) with graphene oxide (GO), yielding a homogeneous layered heterojunction composite film via self‐assembly. The biomimetic optoelectronic synapse based on this film achieves 97.3% accuracy in dynamic visual recognition tasks and exhibits capabilities such as synaptic plasticity. Experiments utilizing X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction spectroscopy (XRD), Fourier–transform infrared spectroscopy (FTIR), ultraviolet‐visible spectroscopy (UV‐vis), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) confirms stable π‐π interactions between GO and C60, facilitating electron transfer and prolonging carrier recombination times. The novel approach leveraging high‐density π electron materials advances artificial intelligence and neuromorphic systems.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2198-3844
Relation: https://doaj.org/toc/2198-3844
DOI: 10.1002/advs.202414319
Access URL: https://doaj.org/article/7ee5a144ca514f88b61ce94226659444
Accession Number: edsdoj.7ee5a144ca514f88b61ce94226659444
Database: Directory of Open Access Journals
FullText Links:
  – Type: other
    Url: https://resolver.ebsco.com:443/public/rma-ftfapi/ejs/direct?AccessToken=4760AE3B8D70FE1DE46F&Show=Object
Text:
  Availability: 0
CustomLinks:
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=21983844&ISBN=&volume=12&issue=11&date=20250301&spage=&pages=&title=Advanced Science&atitle=Efficient%20Carbon%E2%80%90Based%20Optoelectronic%20Synapses%20for%20Dynamic%20Visual%20Recognition&aulast=Wenhao%20Liu&id=DOI:10.1002/advs.202414319
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/7ee5a144ca514f88b61ce94226659444
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.7ee5a144ca514f88b61ce94226659444
RelevancyScore: 1057
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1056.57641601563
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Efficient Carbon‐Based Optoelectronic Synapses for Dynamic Visual Recognition
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Wenhao+Liu%22">Wenhao Liu</searchLink><br /><searchLink fieldCode="AR" term="%22Jihong+Wang%22">Jihong Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Jiahao+Guo%22">Jiahao Guo</searchLink><br /><searchLink fieldCode="AR" term="%22Lin+Wang%22">Lin Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Zhen+Gu%22">Zhen Gu</searchLink><br /><searchLink fieldCode="AR" term="%22Huifeng+Wang%22">Huifeng Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Haiping+Fang%22">Haiping Fang</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Advanced Science, Vol 12, Iss 11, Pp n/a-n/a (2025)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Wiley, 2025.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2025
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Science
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%222D+heterostructure%22">2D heterostructure</searchLink><br /><searchLink fieldCode="DE" term="%22C60%22">C60</searchLink><br /><searchLink fieldCode="DE" term="%22dynamic+vision%22">dynamic vision</searchLink><br /><searchLink fieldCode="DE" term="%22graphene+oxide%22">graphene oxide</searchLink><br /><searchLink fieldCode="DE" term="%22optoelectronic+synapse%22">optoelectronic synapse</searchLink><br /><searchLink fieldCode="DE" term="%22Science%22">Science</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Abstract The human visual nervous system excels at recognizing and processing external stimuli, essential for various physiological functions. Biomimetic visual systems leverage biological synapse properties to improve memory encoding and perception. Optoelectronic devices mimicking these synapses can enhance wearable electronics, with layered heterojunction materials being ideal materials for optoelectronic synapses due to their tunable properties and biocompatibility. However, conventional synthesis methods are complex and environmentally harmful, leading to issues such as poor stability and low charge transfer efficiency. Therefore, it is imperative to develop a more efficient, convenient, and eco‐friendly method for preparing layered heterojunction materials. Here, a one‐step ultrasonic method is employed to mix fullerene (C60) with graphene oxide (GO), yielding a homogeneous layered heterojunction composite film via self‐assembly. The biomimetic optoelectronic synapse based on this film achieves 97.3% accuracy in dynamic visual recognition tasks and exhibits capabilities such as synaptic plasticity. Experiments utilizing X‐ray photoelectron spectroscopy (XPS), X‐ray diffraction spectroscopy (XRD), Fourier–transform infrared spectroscopy (FTIR), ultraviolet‐visible spectroscopy (UV‐vis), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) confirms stable π‐π interactions between GO and C60, facilitating electron transfer and prolonging carrier recombination times. The novel approach leveraging high‐density π electron materials advances artificial intelligence and neuromorphic systems.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2198-3844
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://doaj.org/toc/2198-3844
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1002/advs.202414319
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/7ee5a144ca514f88b61ce94226659444" linkWindow="_blank">https://doaj.org/article/7ee5a144ca514f88b61ce94226659444</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.7ee5a144ca514f88b61ce94226659444
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.7ee5a144ca514f88b61ce94226659444
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1002/advs.202414319
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: 2D heterostructure
        Type: general
      – SubjectFull: C60
        Type: general
      – SubjectFull: dynamic vision
        Type: general
      – SubjectFull: graphene oxide
        Type: general
      – SubjectFull: optoelectronic synapse
        Type: general
      – SubjectFull: Science
        Type: general
    Titles:
      – TitleFull: Efficient Carbon‐Based Optoelectronic Synapses for Dynamic Visual Recognition
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Wenhao Liu
      – PersonEntity:
          Name:
            NameFull: Jihong Wang
      – PersonEntity:
          Name:
            NameFull: Jiahao Guo
      – PersonEntity:
          Name:
            NameFull: Lin Wang
      – PersonEntity:
          Name:
            NameFull: Zhen Gu
      – PersonEntity:
          Name:
            NameFull: Huifeng Wang
      – PersonEntity:
          Name:
            NameFull: Haiping Fang
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 03
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 21983844
          Numbering:
            – Type: volume
              Value: 12
            – Type: issue
              Value: 11
          Titles:
            – TitleFull: Advanced Science
              Type: main
ResultId 1