Analysis on Existence of Positive Solutions for a Class Second Order Semipositone Differential Equations

Bibliographic Details
Title: Analysis on Existence of Positive Solutions for a Class Second Order Semipositone Differential Equations
Authors: Yunhai Wang, Xu Yang
Source: Journal of Function Spaces, Vol 2020 (2020)
Publisher Information: Hindawi Limited, 2020.
Publication Year: 2020
Collection: LCC:Mathematics
Subject Terms: Mathematics, QA1-939
More Details: In this paper, we study the existence of positive solutions of the following second-order semipositone system (see equation 1). By applying a well-known fixed-point theorem, we prove that the problem admits at least one positive solution, if f is bounded below.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2314-8896
2314-8888
Relation: https://doaj.org/toc/2314-8896; https://doaj.org/toc/2314-8888
DOI: 10.1155/2020/7210608
Access URL: https://doaj.org/article/c7e93c497d8b43c39c2f0d35d7a89fb2
Accession Number: edsdoj.7e93c497d8b43c39c2f0d35d7a89fb2
Database: Directory of Open Access Journals
Full text is not displayed to guests.
FullText Links:
  – Type: pdflink
    Url: https://content.ebscohost.com/cds/retrieve?content=AQICAHjPtM4BHU3ZchRwgzYmadcigk49r9CVlbU7V5F6lgH7WwF2_Mjf7GYdEteVyitSz7MDAAAA4jCB3wYJKoZIhvcNAQcGoIHRMIHOAgEAMIHIBgkqhkiG9w0BBwEwHgYJYIZIAWUDBAEuMBEEDEULqqu8Djklas9UNwIBEICBmrjcClAjIw9bZJsBFv395twsQ1AFbyMyDOaPf2ydZe0UAZur5dITQ46qHpXWMmRnp51mLom_822A9G2dZMu141wxgsj_uQlbVHDgc8l-ZLFD2myni8zBpwxgx_KDrypsdZSx8sQUDlA0ecrZ9q8YSU88Qewyq-6lomkWY-zL_wA8zWWVDzjg7_qOwUt32vvNx2iEf7ebteGFNkQ=
Text:
  Availability: 1
  Value: <anid>AN0145130973;[gzmx]14aug.20;2020Aug17.02:47;v2.2.500</anid> <title id="AN0145130973-1">Analysis on Existence of Positive Solutions for a Class Second Order Semipositone Differential Equations </title> <sbt id="AN0145130973-2">1. Introduction</sbt> <p>In this paper, we study the existence of positive solutions of the following second-order semipositone system − u ″ + ρ u = ϕ u + f t , u , ϕ , t ∈ 0 , 1 , − ϕ ″ = μ u , t ∈ 0 , 1 , u 0 = u 1 = ϕ 0 = ϕ 1 = 0. . By applying a well-known fixed-point theorem, we prove that the problem admits at least one positive solution, if f is bounded below.</p> <p>This paper is focused on the existence of positive solutions of a second-order semipositone system</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="EEq1"><mtd><mtext>(1)</mtext></mtd><mtd><mfenced open="{" close=""><mrow><mtable class="cases"><mtr><mtd columnalign="left"><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>ρ</mi><mi>u</mi><mo>=</mo><mi>ϕ</mi><mi>u</mi><mo>+</mo><mi>f</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ϕ</mi></mrow></mfenced><mo>,</mo></mtd><mtd columnalign="left"><mi>t</mi><mo>∈</mo><mfenced open="(" close=")"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced><mo>,</mo></mtd></mtr><mtr><mtd columnalign="left"><mo>−</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>=</mo><mi>μ</mi><mi>u</mi><mo>,</mo></mtd><mtd columnalign="left"><mi>t</mi><mo>∈</mo><mfenced open="(" close=")"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced><mo>,</mo></mtd></mtr><mtr><mtd columnalign="left"><mi>u</mi><mfenced open="(" close=")"><mrow><mn>0</mn></mrow></mfenced><mo>=</mo><mi>u</mi><mfenced open="(" close=")"><mrow><mn>1</mn></mrow></mfenced><mo>=</mo><mi>ϕ</mi><mfenced open="(" close=")"><mrow><mn>0</mn></mrow></mfenced><mo>=</mo><mi>ϕ</mi><mfenced open="(" close=")"><mrow><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> </ephtml> is a positive constant and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> </ephtml> satisfies the following assumption: <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="(" close=")"><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced><mi>f</mi><mo>:</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced><mo>×</mo><msubsup><mrow><mi>ℝ</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>2</mn></mrow></msubsup><mo>⟶</mo><mi>ℝ</mi></math> </ephtml> is continuous, and</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq1"><mtd><mtext>(2)</mtext></mtd><mtd><mi>f</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ϕ</mi></mrow></mfenced><mo>≥</mo><mrow><mo>−</mo></mrow><mi>e</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>,</mo><mi class="cond" /><mtext>for</mtext><mtext /><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ϕ</mi></mrow></mfenced><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced><mo>×</mo><msubsup><mrow><mi>ℝ</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>2</mn></mrow></msubsup><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mo>:</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced><mo>⟶</mo><msub><mrow><mi>ℝ</mi></mrow><mrow><mo>+</mo></mrow></msub></math> </ephtml> is continuous and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>≢</mo><mn>0</mn></math> </ephtml> on [0,1].</p> <p>The second-order elliptic systems</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq2"><mtd><mtext>(3)</mtext></mtd><mtd><mfenced open="{" close=""><mrow><mtable class="cases"><mtr><mtd columnalign="left"><mo>−</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>ρ</mi><mi>u</mi><mo>=</mo><mi>ϕ</mi><mi>u</mi><mo>+</mo><mi>f</mi><mfenced open="(" close=")"><mrow><mi>u</mi></mrow></mfenced><mo>,</mo></mtd><mtd columnalign="left"><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd columnalign="left"><mo>−</mo><mi>Δ</mi><mi>ϕ</mi><mo>=</mo><mi>μ</mi><mi>u</mi><mo>,</mo></mtd><mtd columnalign="left"><mi>x</mi><mo>∈</mo><mi>Ω</mi><mo>,</mo></mtd></mtr><mtr><mtd columnalign="left"><mi>u</mi><mo>=</mo><mi>ϕ</mi><mo>=</mo><mn>0</mn><mo>,</mo></mtd><mtd columnalign="left"><mi>x</mi><mo>∈</mo><mi>∂</mi><mi>Ω</mi><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>have a strong physical meaning in quantum mechanics models [[<reflink idref="bib1" id="ref1">1</reflink>]], in semiconductor theory [[<reflink idref="bib3" id="ref2">3</reflink>]], or in a time- and space-dependent mathematical model of nuclear reactors in a closed container [[<reflink idref="bib4" id="ref3">4</reflink>]]. To the best of our knowledge, existence and multiplicity of nontrivial solutions of BVP(<reflink idref="bib1" id="ref4">1</reflink>) have been widely studied by using the variational method [[<reflink idref="bib5" id="ref5">5</reflink>]], bifurcation techniques [[<reflink idref="bib6" id="ref6">6</reflink>]], or fixed-point theorems [[<reflink idref="bib8" id="ref7">8</reflink>]–[<reflink idref="bib11" id="ref8">11</reflink>]]. In general, in order to ensure the positivity of the solutions of Equation (<reflink idref="bib1" id="ref9">1</reflink>), one of the crucial assumptions is that the nonlinearity <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> </ephtml> is nonnegative. Of course, the natural question is whether Equation (<reflink idref="bib1" id="ref10">1</reflink>) has a positive solution or not if <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> </ephtml> satisfies the assumption <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="(" close=")"><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced></math> </ephtml> .</p> <p>On the other hand, many authors have been interested in finding the relations between the positivity of solutions and the changing sign of the nonlinearity in order to prove the existence of the positive solutions. We refer the readers to [[<reflink idref="bib12" id="ref11">12</reflink>]–[<reflink idref="bib16" id="ref12">16</reflink>]] and the references.</p> <p>Inspired by these references, the purpose of this paper is to find some new conditions, which are used to study the existence and multiplicity of positive solutions of the semipositone Equation (<reflink idref="bib1" id="ref13">1</reflink>). The main tool is the following well-known fixed-point theorem.</p> <hd id="AN0145130973-3">Lemma 1 [17].</hd> <p>Let <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math> </ephtml> be a Banach space and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi></math> </ephtml> be a cone in <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math> </ephtml> . Assume <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>Ω</mi></mrow><mrow><mi>r</mi></mrow></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>Ω</mi></mrow><mrow><mi>R</mi></mrow></msub></math> </ephtml> are open bounded subsets of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math> </ephtml> with <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>Ω</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>∩</mo><mi>K</mi><mo>≠</mo><mi>ϕ</mi><mo>,</mo><mover accent="true"><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>∩</mo><mi>K</mi></mrow><mo stretchy="true">¯</mo></mover><mo>⊂</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>∩</mo><mi>K</mi></math> </ephtml> . Let <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="fraktur" fontstyle="italic">T</mi><mo>:</mo><mover accent="true"><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>∩</mo><mi>K</mi></mrow><mo stretchy="true">¯</mo></mover><mo>⟶</mo><mi>K</mi></math> </ephtml> be a completely continuous operator such that</p> <p></p> <ulist> <item> (a) <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="‖" close="‖"><mrow><mi mathvariant="fraktur" fontstyle="italic">T</mi><mi mathvariant="fraktur" fontstyle="italic">u</mi></mrow></mfenced><mo>≤</mo><mfenced open="‖" close="‖"><mrow><mi>u</mi></mrow></mfenced></math> </ephtml> , for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>∈</mo><mi>∂</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>∩</mo><mi>K</mi></mrow></mfenced></math> </ephtml> , and</item> <p></p> <item> (b) there exists a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>η</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>∈</mo><mi>K</mi><mo>\</mo><mfenced open="{" close="}"><mrow><mn>0</mn></mrow></mfenced></math> </ephtml> such that</item> </ulist> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq3"><mtd><mtext>(4)</mtext></mtd><mtd><mi>u</mi><mo>≠</mo><mi mathvariant="fraktur" fontstyle="italic">T</mi><mi mathvariant="fraktur" fontstyle="italic">u</mi><mo>+</mo><mi>λ</mi><mi>η</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>,</mo><mi class="cond" /><mtext>for</mtext><mtext /><mi>u</mi><mo>∈</mo><mi>∂</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>∩</mo><mi>K</mi></mrow></mfenced><mo>,</mo><mi>λ</mi><mo>></mo><mn>0</mn><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Then, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="fraktur" fontstyle="italic">T</mi></math> </ephtml> has a fixed point in <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>∩</mo><mi>K</mi></mrow><mo stretchy="true">¯</mo></mover><mo>\</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>∩</mo><mi>K</mi></math> </ephtml> . The same conclusion remains valid if (a) holds on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>∂</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>R</mi></mrow></msub><mo>∩</mo><mi>K</mi></mrow></mfenced></math> </ephtml> and (b) holds on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>∂</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>Ω</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>∩</mo><mi>K</mi></mrow></mfenced></math> </ephtml> .</p> <p>The paper is organized as follows: in Section 2, we give some preliminaries, which are about the properties of the Green functions, the notations of some sets, etc.; in Section 3, we give the main results and the corresponding proof. In Section 4, some examples are given to illustrate the main results.</p> <hd id="AN0145130973-4">2. Preliminary</hd> <p>Let <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced></math> </ephtml> be the Green function of linear boundary value problem</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq4"><mtd><mtext>(5)</mtext></mtd><mtd><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>ρ</mi><mi>u</mi><mo>=</mo><mn>0</mn><mo>,</mo><mi class="cond" /><mi>u</mi><mfenced open="(" close=")"><mrow><mn>0</mn></mrow></mfenced><mo>=</mo><mi>u</mi><mfenced open="(" close=")"><mrow><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi><mo>></mo><mo>−</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup></math> </ephtml> .</p> <hd id="AN0145130973-5">Lemma 2 [18].</hd> <p>Let <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mo>=</mo><msqrt><mrow><mfenced open="|" close="|"><mrow><mi>ρ</mi></mrow></mfenced></mrow></msqrt></math> </ephtml> , then <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced></math> </ephtml> can be expressed by</p> <p></p> <ulist> <item> (i) <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mo>=</mo><mfenced open="{" close=""><mrow><mtable class="cases"><mtr><mtd columnalign="left"><mi mathvariant="normal">sinh</mi><mi>ω</mi><mi>t</mi><mi mathvariant="normal">sinh</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>s</mi></mrow></mfenced><mo>/</mo><mi>ω</mi><mi mathvariant="normal">sinh</mi><mi>ω</mi><mo>,</mo></mtd><mtd columnalign="left"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>s</mi><mo>≤</mo><mn>1</mn><mo>,</mo></mtd></mtr><mtr><mtd columnalign="left"><mi mathvariant="normal">sinh</mi><mi>ω</mi><mi>s</mi><mi mathvariant="normal">sinh</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced><mo>/</mo><mi>ω</mi><mi mathvariant="normal">sinh</mi><mi>ω</mi><mo>,</mo></mtd><mtd columnalign="left"><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>1</mn><mo>,</mo><mtext /><mtext>if</mtext><mi>ρ</mi><mo>></mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math> </ephtml></item> <p></p> <item> (ii) <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mo>=</mo><mfenced open="{" close=""><mrow><mtable class="cases"><mtr><mtd columnalign="left"><mi>t</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>s</mi></mrow></mfenced><mo>,</mo></mtd><mtd columnalign="left"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>s</mi><mo>≤</mo><mn>1</mn><mo>,</mo></mtd></mtr><mtr><mtd columnalign="left"><mi>s</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced><mo>,</mo></mtd><mtd columnalign="left"><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>1</mn><mo>,</mo><mtext /><mtext>if</mtext><mi>ρ</mi><mo>=</mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math> </ephtml></item> <p></p> <item> (iii) <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mo>=</mo><mfenced open="{" close=""><mrow><mtable class="cases"><mtr><mtd columnalign="left"><mi mathvariant="normal">sin</mi><mi>ω</mi><mi>t</mi><mi mathvariant="normal">sin</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>s</mi></mrow></mfenced><mo>/</mo><mi>ω</mi><mi mathvariant="normal">sin</mi><mi>ω</mi><mo>,</mo></mtd><mtd columnalign="left"><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mi>s</mi><mo>≤</mo><mn>1</mn><mo>,</mo></mtd></mtr><mtr><mtd columnalign="left"><mi mathvariant="normal">sin</mi><mi>ω</mi><mi>s</mi><mi mathvariant="normal">sin</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced><mo>/</mo><mi>ω</mi><mi mathvariant="normal">sin</mi><mi>ω</mi><mo>,</mo></mtd><mtd columnalign="left"><mn>0</mn><mo>≤</mo><mi>s</mi><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>1</mn><mo>,</mo><mtext /><mtext>if</mtext><mo>−</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo><</mo><mi>ρ</mi><mo>></mo><mn>0</mn></mtd></mtr></mtable></mrow></mfenced></math> </ephtml> .</item> </ulist> <hd id="AN0145130973-6">Lemma 3 [18].</hd> <p>The function <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced></math> </ephtml> has the following properties:</p> <p></p> <ulist> <item> (i) <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mo>></mo><mn>0</mn><mo>,</mo><mtext /><mo>∀</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>∈</mo><mfenced open="(" close=")"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></math> </ephtml></item> <p></p> <item> (ii) <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mo>≤</mo><mi>C</mi><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mo>,</mo><mtext /><mo>∀</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></math> </ephtml></item> <p></p> <item> (iii) <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mo>≥</mo><mi>δ</mi><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mo>,</mo><mtext /><mo>∀</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></math> </ephtml></item> </ulist> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>δ</mi><mo>=</mo><mi>ω</mi><mo>/</mo><mi mathvariant="normal">sinh</mi><mi>ω</mi></math> </ephtml> , if <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi><mo>></mo><mn>0</mn></math> </ephtml> ; <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>δ</mi><mo>=</mo><mn>1</mn></math> </ephtml> , if <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi><mo>=</mo><mn>0</mn></math> </ephtml> ; and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mo>=</mo><mn>1</mn><mo>/</mo><mi mathvariant="normal">sin</mi><mi>ω</mi><mo>,</mo><mi>δ</mi><mo>=</mo><mi>ω</mi><mi mathvariant="normal">sin</mi><mi>ω</mi></math> </ephtml> , if <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>−</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo><</mo><mi>ρ</mi><mo><</mo><mn>0</mn></math> </ephtml> .</p> <hd id="AN0145130973-7">Lemma 4.</hd> <p>For the function <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced></math> </ephtml> , there exists a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ξ</mi><mo>></mo><mn>0</mn></math> </ephtml> such that</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq5"><mtd><mtext>(6)</mtext></mtd><mtd><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><mo>≥</mo><mi>ξ</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <hd id="AN0145130973-8">Proof.</hd> <p></p> <ulist> <item> (i) For <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi><mo>></mo><mn>0</mn></math> </ephtml> , we have</item> </ulist> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq6"><mtd><mtext>(7)</mtext></mtd><mtd><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msup><mi mathvariant="normal">sinh</mi><mi>w</mi></mrow></mfrac><mfenced open="{" close="}"><mrow><mi mathvariant="normal">sinh</mi><mi>ω</mi><mi>t</mi><mfenced open="[" close="]"><mrow><mi mathvariant="normal">cosh</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced><mo>−</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mi mathvariant="normal">sinh</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi mathvariant="normal">cosh</mi><mi>ω</mi><mi>t</mi><mo>−</mo><mn>1</mn></mrow></mfenced></mrow></mfenced><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Let</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq7"><mtd><mtext>(8)</mtext></mtd><mtd><msub><mrow><mi>J</mi></mrow><mrow><mn>1</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><mfenced open="{" close=""><mrow><mtable class="cases"><mtr><mtd columnalign="left"><mfrac><mrow><mi mathvariant="normal">cosh</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced><mo>−</mo><mn>1</mn></mrow><mrow><mi mathvariant="normal">sinh</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced></mrow></mfrac><mo>,</mo></mtd><mtd columnalign="left"><mn>0</mn><mo>≤</mo><mi>t</mi><mo><</mo><mn>1</mn><mo>,</mo></mtd></mtr><mtr><mtd columnalign="left"><mn>0</mn><mo>,</mo></mtd><mtd columnalign="left"><mi>t</mi><mo>=</mo><mn>1</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></mtd></mlabeledtr><mtr><mtd><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><mfenced open="{" close=""><mrow><mtable class="cases"><mtr><mtd columnalign="left"><mfrac><mrow><mi mathvariant="normal">cosh</mi><mi>ω</mi><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi mathvariant="normal">sinh</mi><mi>ω</mi><mi>t</mi></mrow></mfrac><mo>,</mo></mtd><mtd columnalign="left"><mn>0</mn><mo><</mo><mi>t</mi><mo>≤</mo><mn>1</mn><mo>,</mo></mtd></mtr><mtr><mtd columnalign="left"><mn>0</mn><mo>,</mo></mtd><mtd columnalign="left"><mi>t</mi><mo>=</mo><mn>0</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mtd></mtr></mtable></math> </ephtml> </p> <p>Since <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>J</mi></mrow><mrow><mn>1</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced></math> </ephtml> is positive and continuous on [0,1] and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>J</mi></mrow><mrow><mn>1</mn></mrow></msub><mfenced open="(" close=")"><mrow><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn></math> </ephtml> , we have</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq8"><mtd><mtext>(9)</mtext></mtd><mtd><msubsup><mrow><mi>J</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><munder><mrow><mi mathvariant="normal">max</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></munder><msub><mrow><mi>J</mi></mrow><mrow><mn>1</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>></mo><mn>0</mn><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>In the similar way, we also have</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq9"><mtd><mtext>(10)</mtext></mtd><mtd><msubsup><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><munder><mrow><mi mathvariant="normal">max</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></munder><msub><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>></mo><mn>0</mn><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Choosing <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ξ</mi><mo><</mo><mi>ω</mi><mo>/</mo><mfenced open="(" close=")"><mrow><msubsup><mrow><mi>J</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></mfenced></math> </ephtml> . Then, for any <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>∈</mo><mfenced open="(" close=")"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></math> </ephtml> , we have</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq10"><mtd><mtext>(11)</mtext></mtd><mtd><mi>ξ</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>=</mo><mi>ξ</mi><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msup><mi mathvariant="normal">sinh</mi><mi>w</mi></mrow></mfrac><mfenced open="{" close="}"><mrow><mi mathvariant="normal">sinh</mi><mi>ω</mi><mi>t</mi><mfenced open="[" close="]"><mrow><mi mathvariant="normal">cosh</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced><mo>−</mo><mn>1</mn></mrow></mfenced><mo>+</mo><mi mathvariant="normal">sinh</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi mathvariant="normal">cosh</mi><mi>ω</mi><mi>t</mi><mo>−</mo><mn>1</mn></mrow></mfenced></mrow></mfenced><mo>=</mo><mi>ξ</mi><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msup><mi mathvariant="normal">sinh</mi><mi>w</mi></mrow></mfrac><mfenced open="{" close="}"><mrow><mi mathvariant="normal">sinh</mi><mi>ω</mi><mi>t</mi><mi mathvariant="normal">sinh</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced><mfrac><mrow><mi mathvariant="normal">cosh</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced><mo>−</mo><mn>1</mn></mrow><mrow><mi mathvariant="normal">sinh</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced></mrow></mfrac><mo>+</mo><mi mathvariant="normal">sinh</mi><mi>ω</mi><mi>t</mi><mi mathvariant="normal">sinh</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced><mfrac><mrow><mi mathvariant="normal">cosh</mi><mi>ω</mi><mi>t</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi mathvariant="normal">sinh</mi><mi>ω</mi><mi>t</mi></mrow></mfrac></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>ξ</mi></mrow><mrow><mi>ω</mi></mrow></mfrac><mfrac><mrow><mn>1</mn></mrow><mrow><mi>ω</mi><mi mathvariant="normal">sinh</mi><mi>w</mi></mrow></mfrac><mfenced open="{" close="}"><mrow><mi mathvariant="normal">sinh</mi><mi>ω</mi><mi>t</mi><mi mathvariant="normal">sinh</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced><msubsup><mrow><mi>J</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>+</mo><mi mathvariant="normal">sinh</mi><mi>ω</mi><mi>t</mi><mi mathvariant="normal">sinh</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced><msubsup><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>ξ</mi><mfenced open="(" close=")"><mrow><msubsup><mrow><mi>J</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></mfenced></mrow><mrow><mi>ω</mi></mrow></mfrac><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><mo>≤</mo><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Since <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>G</mi><mfenced open="(" close=")"><mrow><mn>0</mn><mo>,</mo><mn>0</mn></mrow></mfenced><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mn>0</mn><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>=</mo><mi>G</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>,</mo><mn>1</mn></mrow></mfenced><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>=</mo><mn>0</mn></math> </ephtml> , then for any <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ξ</mi><mo>></mo><mn>0</mn></math> </ephtml> , we have</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq11"><mtd><mtext>(12)</mtext></mtd><mtd><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><mo>=</mo><mi>ξ</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>,</mo><mi class="cond" /><mtext>for</mtext><mtext /><mi>t</mi><mo>=</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Therefore, there exists a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ξ</mi><mo>></mo><mn>0</mn></math> </ephtml> such that</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq12"><mtd><mtext>(13)</mtext></mtd><mtd><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><mo>≥</mo><mi>ξ</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p></p> <ulist> <item> (ii) For <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi><mo>=</mo><mn>0</mn></math> </ephtml> , it is obvious that</item> <p></p> <item> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq13"><mtd><mtext>(14)</mtext></mtd><mtd><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mi>t</mi><msup><mrow><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup><mo>≤</mo><mi>t</mi><msup><mrow><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </item> <p></p> <item> (iii) For <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mo>−</mo><msup><mrow><mi>π</mi></mrow><mrow><mn>2</mn></mrow></msup><mo><</mo><mi>ρ</mi><mo><</mo><mn>0</mn></math> </ephtml> , we have</item> <p></p> <item> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq14"><mtd><mtext>(15)</mtext></mtd><mtd><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mn>2</mn></mrow></msup><mi mathvariant="normal">sin</mi><mi>w</mi></mrow></mfrac><mfenced open="{" close="}"><mrow><mi mathvariant="normal">sin</mi><mi>ω</mi><mi>t</mi><mfenced open="[" close="]"><mrow><mn>1</mn><mo>−</mo><mi mathvariant="normal">cos</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced></mrow></mfenced><mo>+</mo><mi mathvariant="normal">sinh</mi><mi>ω</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>−</mo><mi>t</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mn>1</mn><mo>−</mo><mi mathvariant="normal">cos</mi><mi>ω</mi><mi>t</mi></mrow></mfenced></mrow></mfenced><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </item> </ulist> <p>Using the similar discussion of Case (i), it follows that there exists a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ξ</mi><mo>></mo><mn>0</mn></math> </ephtml> such that</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq15"><mtd><mtext>(16)</mtext></mtd><mtd><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><mo>≥</mo><mi>ξ</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>For convenience, let <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced></math> </ephtml> denote the Green function for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ρ</mi><mo>=</mo><mn>0</mn></math> </ephtml> . Then, Equation (<reflink idref="bib1" id="ref14">1</reflink>) can be rewritten as</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="EEq17"><mtd><mtext>(17)</mtext></mtd><mtd><mfenced open="{" close=""><mrow><mtable class="cases"><mtr><mtd columnalign="left"><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>ρ</mi><mi>u</mi><mo>=</mo><mi>μ</mi><mi>u</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>u</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>f</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>u</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>u</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi></mrow></mfenced><mo>,</mo></mtd></mtr><mtr><mtd columnalign="left"><mi>u</mi><mfenced open="(" close=")"><mrow><mn>0</mn></mrow></mfenced><mo>=</mo><mi>u</mi><mfenced open="(" close=")"><mrow><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Furthermore, let <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>=</mo><mi>u</mi><mo>+</mo><mi>ω</mi></math> </ephtml> , where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>e</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi></math> </ephtml> is the unique solution of the linear boundary value problem</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq16"><mtd><mtext>(18)</mtext></mtd><mtd><mfenced open="{" close=""><mrow><mtable class="cases"><mtr><mtd columnalign="left"><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>ρ</mi><mi>u</mi><mo>=</mo><mi>e</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>,</mo></mtd></mtr><mtr><mtd columnalign="left"><mi>u</mi><mfenced open="(" close=")"><mrow><mn>0</mn></mrow></mfenced><mo>=</mo><mi>u</mi><mfenced open="(" close=")"><mrow><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Then, we rewrite (<reflink idref="bib17" id="ref15">17</reflink>) as</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq17"><mtd><mtext>(19)</mtext></mtd><mtd><mfenced open="{" close=""><mrow><mtable class="cases"><mtr><mtd columnalign="left"><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>ρ</mi><mi>x</mi><mo>=</mo><mi>F</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mo>,</mo></mtd></mtr><mtr><mtd columnalign="left"><mi>x</mi><mfenced open="(" close=")"><mrow><mn>0</mn></mrow></mfenced><mo>=</mo><mi>x</mi><mfenced open="(" close=")"><mrow><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>where</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq18"><mtd><mtext>(20)</mtext></mtd><mtd><mi>F</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>x</mi><mo>−</mo><mi>λ</mi><mi>ω</mi></mrow></mfenced><mo>=</mo><mi>μ</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mfenced open="{" close="}"><mrow><mi>f</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>x</mi><mo>−</mo><mi>ω</mi><mo>,</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi></mrow></mfenced><mo>+</mo><mi>e</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced></mrow></mfenced><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>From the above discussion, then we have the following lemma.</p> <hd id="AN0145130973-9">Lemma 5.</hd> <p>Assume that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="(" close=")"><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced></math> </ephtml> holds. Then, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced></math> </ephtml> is a positive solution of (<reflink idref="bib1" id="ref16">1</reflink>) if only if <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced></math> </ephtml> is a positive solution of the following problem:</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq19"><mtd><mtext>(21)</mtext></mtd><mtd><mo>−</mo><msup><mrow><mi>x</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>ρ</mi><mi>x</mi><mo>=</mo><mi>F</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced></mrow></mfenced><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>with <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>≥</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced></math> </ephtml> . Here, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>H</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced></math> </ephtml> denotes the Heaviside function of a single real variable:</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq20"><mtd><mtext>(22)</mtext></mtd><mtd><mi>H</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><mfenced open="{" close=""><mrow><mtable class="cases"><mtr><mtd columnalign="left"><mn>1</mn><mo>,</mo></mtd><mtd columnalign="left"><mi>t</mi><mo>≥</mo><mn>0</mn><mo>,</mo></mtd></mtr><mtr><mtd columnalign="left"><mn>0</mn><mo>,</mo></mtd><mtd columnalign="left"><mi>t</mi><mo><</mo><mn>0</mn><mo>.</mo></mtd></mtr></mtable></mrow></mfenced></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Let <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>E</mi></math> </ephtml> denote the Banach space <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>C</mi><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></math> </ephtml> with the norm <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="‖" close="‖"><mrow><mi>x</mi></mrow></mfenced><mo>=</mo><msub><mrow><mi mathvariant="normal">max</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></msub><mfenced open="|" close="|"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced></mrow></mfenced></math> </ephtml> .</p> <p>Define a cone <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi><mo>⊂</mo><mi>E</mi></math> </ephtml> by</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq21"><mtd><mtext>(23)</mtext></mtd><mtd><mi>K</mi><mo>=</mo><mfenced open="{" close="}"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>∈</mo><mi>C</mi><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced><mtext>: </mtext><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></mrow></munder><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>≥</mo><mi>σ</mi><mfenced open="‖" close="‖"><mrow><mi>x</mi></mrow></mfenced></mrow></mfenced><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>∈</mo><mfenced open="(" close=")"><mrow><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></mfenced><mo>,</mo><mi>σ</mi><mo>=</mo><msub><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></mrow></msub><mfenced open="(" close=")"><mrow><mi>σ</mi><mo>/</mo><mi>C</mi></mrow></mfenced><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><mo>∈</mo><mfenced open="(" close=")"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></math> </ephtml> . Define an operator <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="fraktur" fontstyle="italic">T</mi></math> </ephtml> by</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq22"><mtd><mtext>(24)</mtext></mtd><mtd><mi mathvariant="fraktur" fontstyle="italic">T</mi><mfenced open="(" close=")"><mrow><mi>x</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>F</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <hd id="AN0145130973-10">Lemma 6.</hd> <p>Assume that (<emph>F</emph><subs>0</subs>) holds. Then, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="fraktur" fontstyle="italic">T</mi><mfenced open="(" close=")"><mrow><mi>K</mi></mrow></mfenced><mo>⊆</mo><mi>K</mi></math> </ephtml> , and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="fraktur" fontstyle="italic">T</mi><mo>:</mo><mi>K</mi><mo>⟶</mo><mi>K</mi></math> </ephtml> is completely continuous.</p> <hd id="AN0145130973-11">Proof.</hd> <p>For any <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>∈</mo><mi>K</mi></math> </ephtml> , from Lemma 3, it follows that</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq23"><mtd><mtext>(25)</mtext></mtd><mtd><mi mathvariant="fraktur" fontstyle="italic">T</mi><mfenced open="(" close=")"><mrow><mi>x</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>F</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≥</mo><mi>δ</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>F</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi><mo>=</mo><mfrac><mrow><mi>δ</mi></mrow><mrow><mi>C</mi></mrow></mfrac><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>C</mi><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>F</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≥</mo><mfrac><mrow><mi>δ</mi></mrow><mrow><mi>C</mi></mrow></mfrac><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>F</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>which implies that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="fraktur" fontstyle="italic">T</mi><mfenced open="(" close=")"><mrow><mi>K</mi></mrow></mfenced><mo>⊆</mo><mi>K</mi></math> </ephtml> .</p> <p>Now, we show that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="fraktur" fontstyle="italic">T</mi><mo>:</mo><mi>K</mi><mo>⟶</mo><mi>K</mi></math> </ephtml> is completely continuous.</p> <p>First, we show that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="fraktur" fontstyle="italic">T</mi></math> </ephtml> maps the bounded set into itself. Since <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>e</mi></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> </ephtml> are continuous, for any given <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>c</mi><mo>></mo><mn>0</mn></math> </ephtml> , let</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq24"><mtd><mtext>(26)</mtext></mtd><mtd><mi>L</mi><mo>=</mo><mi mathvariant="normal">max</mi><mfenced open="{" close="}"><mrow><mi>F</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced></mrow></mfenced><mtext>: </mtext><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>1</mn><mo>,</mo><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>c</mi></mrow></mfenced><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Then, for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><msub><mrow><mover accent="true"><mi>K</mi><mo stretchy="true">¯</mo></mover></mrow><mrow><mi>c</mi></mrow></msub></math> </ephtml> , we have</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq25"><mtd><mtext>(27)</mtext></mtd><mtd><msub><mrow><mfenced open="|" close="|"><mrow><mi mathvariant="fraktur" fontstyle="italic">T</mi><mfenced open="(" close=")"><mrow><mi>x</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced></mrow></mfenced></mrow><mrow><mo>∞</mo></mrow></msub><mo>=</mo><msub><mrow><mfenced open="|" close="|"><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>F</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi></mrow></mfenced></mrow><mrow><mo>∞</mo></mrow></msub><mo>≤</mo><mi>L</mi><munder><mrow><mi mathvariant="normal">max</mi></mrow><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>≤</mo><mn>1</mn></mrow></munder><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>which implies that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="fraktur" fontstyle="italic">T</mi><mfenced open="(" close=")"><mrow><msub><mrow><mover accent="true"><mi>K</mi><mo stretchy="true">¯</mo></mover></mrow><mrow><mi>c</mi></mrow></msub></mrow></mfenced></math> </ephtml> is uniformly bounded.</p> <p>Second, for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></math> </ephtml> , we have</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq26"><mtd><mtext>(28)</mtext></mtd><mtd><mfenced open="|" close="|"><mrow><mi mathvariant="fraktur" fontstyle="italic">T</mi><mi>x</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced><mo>−</mo><mi mathvariant="fraktur" fontstyle="italic">T</mi><mi>x</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfenced></mrow></mfenced><mo>=</mo><mfenced open="|" close="|"><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mfenced open="[" close="]"><mrow><mi>G</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>s</mi></mrow></mfenced><mo>−</mo><mi>G</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>s</mi></mrow></mfenced></mrow></mfenced><mi>F</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi></mrow></mfenced><mo>=</mo><mfenced open="|" close="|"><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mfenced open="[" close="]"><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mfenced open="(" close=")"><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><mi>s</mi></mrow></mfenced><mo>−</mo><msub><mrow><mi>G</mi></mrow><mrow><mi>i</mi></mrow></msub><mfenced open="(" close=")"><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mi>s</mi></mrow></mfenced></mrow></mfenced><msub><mrow><mover accent="true"><mi>f</mi><mo stretchy="true">~</mo></mover></mrow><mrow><mi>i</mi></mrow></msub><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>u</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi></mrow></mfenced><mo>≤</mo><mi>L</mi><munder><mrow><mi mathvariant="normal">max</mi></mrow><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>,</mo><mi>s</mi><mo>≤</mo><mn>1</mn></mrow></munder><mfenced open="|" close="|"><mrow><mfrac><mrow><mi>∂</mi><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced></mrow><mrow><mi>∂</mi><mi>t</mi></mrow></mfrac><mfenced open="‖" close=""><mrow><msub><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>−</mo><msub><mrow><mi>t</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfenced></mrow></mfenced><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>which implies that the operator <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="fraktur" fontstyle="italic">T</mi></math> </ephtml> is equicontinuous.</p> <p>Thus, by applying the Arzela-Ascoli theorem [[<reflink idref="bib17" id="ref17">17</reflink>]], we obtain that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="fraktur" fontstyle="italic">T</mi><mfenced open="(" close=")"><mrow><mover accent="true"><msub><mrow><mi>K</mi></mrow><mrow><mi>c</mi></mrow></msub><mo stretchy="true">¯</mo></mover></mrow></mfenced></math> </ephtml> is relatively compact, namely, the operator <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="fraktur" fontstyle="italic">T</mi></math> </ephtml> is compact.</p> <p>Finally, we claim that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="fraktur" fontstyle="italic">T</mi><mo>:</mo><mover accent="true"><msub><mrow><mi>K</mi></mrow><mrow><mi>c</mi></mrow></msub><mo stretchy="true">¯</mo></mover><mo>⟶</mo><mi>K</mi></math> </ephtml> is continuous. Assume that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mfenced open="{" close="}"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow></mfenced></mrow><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mrow><mo>∞</mo></mrow></msubsup><mo>⊂</mo><mover accent="true"><msub><mrow><mi>K</mi></mrow><mrow><mi>c</mi></mrow></msub><mo stretchy="true">¯</mo></mover></math> </ephtml> which converges to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced></math> </ephtml> uniformly on [0,1]. By Lebesgue's dominated convergence theorem and letting <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>n</mi><mo>⟶</mo><mo>∞</mo></math> </ephtml> , we have</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq27"><mtd><mtext>(29)</mtext></mtd><mtd><mfenced open="‖" close="‖"><mrow><mi mathvariant="fraktur" fontstyle="italic">T</mi><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>−</mo><mi mathvariant="fraktur" fontstyle="italic">T</mi><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mfenced open="‖" close="‖"><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>F</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced></mrow></mfenced><mo>−</mo><mi>F</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi></mrow></mfenced><mo>≤</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>F</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced></mrow></mfenced><mo>−</mo><mi>F</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi><mo>⟶</mo><mn>0</mn><mo>,</mo><mi class="cond" /><mtext>as</mtext><mtext /><mi>n</mi><mo>⟶</mo><mrow><mo>+</mo></mrow><mo>∞</mo><mrow><mo>.</mo></mrow></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>So, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="fraktur" fontstyle="italic">T</mi></math> </ephtml> is continuous on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>K</mi></mrow><mrow><mi>c</mi></mrow></msub></math> </ephtml> . The proof is completed.</p> <p>At the end of this section, let</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq28"><mtd><mtext>(30)</mtext></mtd><mtd><msup><mrow><mi>e</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><munder><mrow><mi mathvariant="normal">max</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></munder><mi>e</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>></mo><mn>0</mn><mo>,</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><munder><mrow><mi mathvariant="normal">max</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mrow></munder><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Define the height functions</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq29"><mtd><mtext>(31)</mtext></mtd><mtd><msub><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msub><mfenced open="(" close=")"><mrow><mi>r</mi></mrow></mfenced><mo>=</mo><mi mathvariant="normal">min</mi><mfenced open="{" close="}"><mrow><mi>f</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ϕ</mi></mrow></mfenced><mtext>: </mtext><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ϕ</mi></mrow></mfenced><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced><mo>×</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mi>r</mi></mrow></mfenced><mo>×</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mfrac><mrow><mi>r</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mrow></mfenced></mrow></mfenced><mo>,</mo></mtd></mlabeledtr><mtr><mtd><msub><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>r</mi></mrow></mfenced><mo>=</mo><mi mathvariant="normal">max</mi><mfenced open="{" close="}"><mrow><mi>f</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ϕ</mi></mrow></mfenced><mtext>: </mtext><mfenced open="(" close=")"><mrow><mi>u</mi><mo>,</mo><mi>ϕ</mi></mrow></mfenced><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mi>r</mi></mrow></mfenced><mo>×</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mfrac><mrow><mi>r</mi></mrow><mrow><mn>6</mn></mrow></mfrac></mrow></mfenced></mrow></mfenced><mo>.</mo></mtd></mtr></mtable></math> </ephtml> </p> <p>In addition, we need to select some suitable open bounded sets. For any <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>γ</mi><mo>></mo><mn>0</mn></math> </ephtml> , let</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq30"><mtd><mtext>(32)</mtext></mtd><mtd><msup><mrow><mi>Ω</mi></mrow><mrow><mi>γ</mi></mrow></msup><mo>=</mo><mfenced open="{" close="}"><mrow><mi>x</mi><mo>∈</mo><mi>E</mi><mo>:</mo><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></mrow></munder><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo><</mo><mi>σ</mi><mi>γ</mi></mrow></mfenced><mo>,</mo><msup><mrow><mi>B</mi></mrow><mrow><mi>γ</mi></mrow></msup><mo>=</mo><mfenced open="{" close="}"><mrow><mi>x</mi><mo>∈</mo><mi>E</mi><mo>:</mo><mfenced open="‖" close="‖"><mrow><mi>x</mi></mrow></mfenced><mo><</mo><mi>γ</mi></mrow></mfenced><mo>,</mo></mtd></mlabeledtr><mtr><mtd><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mo>=</mo><msub><mrow><mi>Ω</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>∩</mo><mi>K</mi><mo>,</mo><mi>∂</mi><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mo>=</mo><mi>∂</mi><msub><mrow><mi>Ω</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>∩</mo><mi>K</mi><mo>,</mo></mtd></mtr><mtr><mtd><msubsup><mrow><mi>B</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mo>=</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>∩</mo><mi>K</mi><mo>,</mo><mi>∂</mi><msubsup><mrow><mi>B</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mo>=</mo><mi>∂</mi><msub><mrow><mi>B</mi></mrow><mrow><mi>γ</mi></mrow></msub><mo>∩</mo><mi>K</mi><mo>.</mo></mtd></mtr></mtable></math> </ephtml> </p> <p>From [[<reflink idref="bib19" id="ref18">19</reflink>]], we can conclude the lemma below.</p> <hd id="AN0145130973-12">Lemma 7.</hd> <p></p> <ulist> <item> (i) <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>γ</mi></mrow></msubsup></math> </ephtml> , <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>γ</mi></mrow></msubsup></math> </ephtml> are open relative to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>K</mi></math> </ephtml></item> <p></p> <item> (ii) <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>σ</mi><mi>γ</mi></mrow></msubsup><mo>⊂</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>γ</mi></mrow></msubsup><mo>⊂</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>γ</mi></mrow></msubsup></math> </ephtml></item> <p></p> <item> (iii) <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi>∂</mi><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>γ</mi></mrow></msubsup></math> </ephtml> if and only if <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></mrow></munder><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><mi>σ</mi><mi>γ</mi></math> </ephtml></item> <p></p> <item> (iv) If <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi>∂</mi><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>γ</mi></mrow></msubsup></math> </ephtml> , then <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mi>γ</mi><mo>≤</mo><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>≤</mo><mi>γ</mi></math> </ephtml> , for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></math> </ephtml></item> </ulist> <hd id="AN0145130973-13">3. Main Results</hd> <p></p> <hd id="AN0145130973-14">Theorem 8.</hd> <p>Assume that (<emph>F</emph><subs>0</subs>) holds. In addition, the function <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> </ephtml> satisfies the following assumption:</p> <p>(<emph>F</emph><subs>1</subs>) There exists a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>></mo><mn>0</mn></math> </ephtml> such that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msub><mfenced open="(" close=")"><mrow><mi>α</mi></mrow></mfenced><mo>≥</mo><mn>0</mn></math> </ephtml> and</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq31"><mtd><mtext>(33)</mtext></mtd><mtd><mi>μ</mi><mfrac><mrow><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>6</mn></mrow></mfrac><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>e</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><msup><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>α</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo><</mo><mi>α</mi><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Then, we have</p> <p></p> <ulist> <item> (i) If <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mi>α</mi><mo>></mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>∗</mo></mrow></msup></math> </ephtml> , then (<reflink idref="bib1" id="ref19">1</reflink>) has at least one partly positive solution <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="(" close=")"><mrow><mi>u</mi><mo>,</mo><mi>ϕ</mi></mrow></mfenced></math> </ephtml> , namely,</item> <p></p> <item> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq32"><mtd><mtext>(34)</mtext></mtd><mtd><mi>u</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>></mo><mn>0</mn><mo>,</mo><mi class="cond" /><mtext>for</mtext><mtext /><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></mtd></mlabeledtr></mtable></math> </ephtml> </item> <p></p> <item> (ii) If <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mi>δ</mi><mi>ξ</mi><mo>></mo><mi>C</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>∗</mo></mrow></msup></math> </ephtml> , then (<reflink idref="bib1" id="ref20">1</reflink>) has at least one positive solution <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="(" close=")"><mrow><mi>u</mi><mo>,</mo><mi>ϕ</mi></mrow></mfenced></math> </ephtml> , which satisfies</item> <p></p> <item> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq33"><mtd><mtext>(35)</mtext></mtd><mtd><mi>u</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>></mo><mn>0</mn><mo>,</mo><mi class="cond" /><mtext>for</mtext><mtext /><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></mtd></mlabeledtr></mtable></math> </ephtml> </item> </ulist> <hd id="AN0145130973-15">Proof.</hd> <p>For any <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>∈</mo><mi>∂</mi><msubsup><mrow><mi>B</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math> </ephtml> , it is obvious that</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq34"><mtd><mtext>(36)</mtext></mtd><mtd><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mo>≤</mo><mfenced open="‖" close="‖"><mrow><mi>x</mi></mrow></mfenced><mo>=</mo><mi>α</mi><mo>,</mo></mtd></mlabeledtr><mtr><mtd><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≤</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><mi>α</mi><mo>.</mo></mtd></mtr></mtable></math> </ephtml> </p> <p>Then, from (<emph>F</emph><subs>1</subs>) it follows that</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq35"><mtd><mtext>(37)</mtext></mtd><mtd><mi mathvariant="fraktur" fontstyle="italic">T</mi><mfenced open="(" close=")"><mrow><mi>x</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>F</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi><mo>=</mo><mi>μ</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>f</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mo>+</mo><mi>e</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≤</mo><mi>μ</mi><mfrac><mrow><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>6</mn></mrow></mfrac><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>e</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>f</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mo>,</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≤</mo><mi>μ</mi><mfrac><mrow><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>6</mn></mrow></mfrac><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>e</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><msup><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>α</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo><</mo><mi>α</mi><mo>=</mo><mfenced open="‖" close="‖"><mrow><mi>x</mi></mrow></mfenced><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>which implies that (a) of Lemma 1 holds.</p> <p>Let</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq36"><mtd><mtext>(38)</mtext></mtd><mtd><mi>Ψ</mi><mfenced open="(" close=")"><mrow><mi>ρ</mi></mrow></mfenced><mo>=</mo><munder><mrow><mi mathvariant="normal">max</mi></mrow><mrow><mn>0</mn><mo>≤</mo><mi>x</mi><mo>≤</mo><mi>ρ</mi></mrow></munder><mfenced open="{" close="}"><mrow><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mo>⋅</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>τ</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>From [[<reflink idref="bib21" id="ref21">21</reflink>]], we have that</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq37"><mtd><mtext>(39)</mtext></mtd><mtd><munder><mrow><mi mathvariant="normal">lim</mi></mrow><mrow><mi>ρ</mi><mrow><mo>→</mo></mrow><mrow><mo>+</mo></mrow><mrow><mo>∞</mo></mrow></mrow></munder><mfrac><mrow><mi>Ψ</mi><mfenced open="(" close=")"><mrow><mi>ρ</mi></mrow></mfenced></mrow><mrow><mi>ρ</mi></mrow></mfrac><mo>=</mo><mrow><mo>+</mo></mrow><mrow><mo>∞</mo></mrow><mrow><mo>.</mo></mrow></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Then, there exists a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>β</mi><mo>></mo></math> </ephtml> with <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mi>β</mi><mo>></mo><mi>α</mi></math> </ephtml> such that</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq38"><mtd><mtext>(40)</mtext></mtd><mtd><mi>H</mi><mfenced open="(" close=")"><mrow><mi>σ</mi><mi>β</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>σ</mi><mi>β</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mo>⋅</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>τ</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><mi>σ</mi><mi>β</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>σ</mi><mi>β</mi><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>τ</mi><mo>></mo><mi>Λ</mi><mi>β</mi><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>Λ</mi></math> </ephtml> satisfies</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq39"><mtd><mtext>(41)</mtext></mtd><mtd><mi>Λ</mi><mi>μ</mi><mi>σ</mi><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>></mo><mn>1</mn><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Let <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>η</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><mn>1</mn></math> </ephtml> ; now we prove that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mo>≠</mo><mi mathvariant="fraktur" fontstyle="italic">T</mi><mi>x</mi><mo>+</mo><mi>λ</mi><mo>,</mo><mtext>for</mtext><mtext /><mi>x</mi><mtext /><mo>∈</mo><mi>∂</mi><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>β</mi></mrow></msubsup><mtext /><mtext>and</mtext><mtext /><mi>λ</mi><mo>></mo><mn>0</mn></math> </ephtml> . On the contrary, if there exists a pair of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>∂</mi><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>β</mi></mrow></msubsup></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn></math> </ephtml> such that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><mi mathvariant="fraktur" fontstyle="italic">T</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow></msub></math> </ephtml> , then from (iv) of Lemma 7, it follows that</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq40"><mtd><mtext>(42)</mtext></mtd><mtd><mi>σ</mi><mi>β</mi><mo>=</mo><mi>σ</mi><mfenced open="‖" close="‖"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced><mo>≤</mo><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>≤</mo><mi>β</mi><mo>,</mo><mi class="cond" /><mtext>for</mtext><mtext /><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Furthermore, for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></math> </ephtml> , we have</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq41"><mtd><mtext>(43)</mtext></mtd><mtd><mfenced open="‖" close="‖"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced><mo>≥</mo><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>θ</mi><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></munder><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>θ</mi><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></munder><mi mathvariant="fraktur" fontstyle="italic">T</mi><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>=</mo><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>θ</mi><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></munder><mi>μ</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>τ</mi><mi>d</mi><mi>s</mi><mo>+</mo><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>θ</mi><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></munder><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>f</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mo>,</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mo>+</mo><mi>e</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>θ</mi><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></munder><mi>μ</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>H</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≥</mo><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>θ</mi><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></munder><mi>μ</mi><mi>δ</mi><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>H</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≥</mo><mi>μ</mi><mi>σ</mi><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>H</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>K</mi><mfenced open="(" close=")"><mrow><mi>τ</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>=</mo><mi>μ</mi><mi>σ</mi><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>H</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>τ</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>=</mo><mi>μ</mi><mi>σ</mi><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>H</mi><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>−</mo><mi>ω</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>τ</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>=</mo><mi>μ</mi><mi>σ</mi><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>H</mi><mfenced open="(" close=")"><mrow><mi>σ</mi><mfenced open="‖" close="‖"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>σ</mi><mfenced open="‖" close="‖"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced><mo>−</mo><mi>ω</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>τ</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><mi>σ</mi><mfenced open="‖" close="‖"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>σ</mi><mfenced open="‖" close="‖"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≥</mo><mi>μ</mi><mi>σ</mi><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>⋅</mo><mi>Λ</mi><mi>β</mi><mo>></mo><mi>β</mi><mo>=</mo><mfenced open="‖" close="‖"><mrow><msub><mrow><mi>x</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>which contradicts with the statement (iii) of Lemma 7. So (b) holds.</p> <p>Since <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo><</mo><mi>σ</mi><mi>β</mi></math> </ephtml> , from Lemma 7, we have <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><msubsup><mrow><mi>B</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>α</mi></mrow></msubsup><mo stretchy="true">¯</mo></mover><mo>⊂</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>σ</mi><mi>β</mi></mrow></msubsup><mo>⊂</mo><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>β</mi></mrow></msubsup></math> </ephtml> . Therefore, by Lemma 1, we can get that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="fraktur" fontstyle="italic">T</mi></math> </ephtml> has at least one positive fixed-point <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>∈</mo><mover accent="true"><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>β</mi></mrow></msubsup><mo stretchy="true">¯</mo></mover><mo>\</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>K</mi></mrow><mrow><mi>α</mi></mrow></msubsup></math> </ephtml> . Hence, the inequalities hold,</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq42"><mtd><mtext>(44)</mtext></mtd><mtd><mfenced open="‖" close="‖"><mrow><mi>x</mi></mrow></mfenced><mo>≥</mo><mi>α</mi><mo>,</mo><mi>σ</mi><mi>α</mi><mo>≤</mo><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></mrow></munder><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>≤</mo><mi>σ</mi><mi>β</mi><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>On the other hand, since <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mfenced open="‖" close="‖"><mrow><mi>x</mi></mrow></mfenced><mo>≤</mo><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></mrow></munder><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>≤</mo><mi>σ</mi><mi>β</mi></math> </ephtml> , we have <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="‖" close="‖"><mrow><mi>x</mi></mrow></mfenced><mo>≤</mo><mi>β</mi></math> </ephtml> .</p> <p></p> <ulist> <item> (i) Since</item> <p></p> <item> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq43"><mtd><mtext>(45)</mtext></mtd><mtd><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></mrow></munder><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>≥</mo><mi>σ</mi><mi>α</mi><mo>></mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>></mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>e</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </item> <p></p> </ulist> <p>• we have</p> <p></p> <ulist> <item> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq44"><mtd><mtext>(46)</mtext></mtd><mtd><mi>u</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>></mo><mn>0</mn><mo>,</mo><mi class="cond" /><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></mtd></mlabeledtr></mtable></math> </ephtml> </item> <p></p> <item> (ii) From Lemmas 3 and 4, we have</item> <p></p> <item> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq45"><mtd><mtext>(47)</mtext></mtd><mtd><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>≥</mo><mfrac><mrow><mi>δ</mi></mrow><mrow><mi>C</mi></mrow></mfrac><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><mfenced open="‖" close="‖"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><mi>δ</mi></mrow><mrow><mi>C</mi></mrow></mfrac><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><mi>α</mi><mo>≥</mo><mi>α</mi><mfrac><mrow><mi>δ</mi></mrow><mrow><msup><mrow><mi>C</mi><mi>e</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></mfrac><mi>ξ</mi><msup><mrow><mi>e</mi></mrow><mrow><mo>∗</mo></mrow></msup><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≥</mo><mi>α</mi><mfrac><mrow><mi>δ</mi></mrow><mrow><msup><mrow><mi>C</mi><mi>e</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></mfrac><mi>ξ</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>e</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>=</mo><mi>α</mi><mfrac><mrow><mi>δ</mi></mrow><mrow><msup><mrow><mi>C</mi><mi>e</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></mfrac><mi>ξ</mi><mo>⋅</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>></mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </item> <p></p> <item> which implies that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><mi>x</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>></mo><mn>0</mn></math> </ephtml></item> </ulist> <p>Therefore, (<reflink idref="bib1" id="ref22">1</reflink>) has one positive solution <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="(" close=")"><mrow><mi>u</mi><mo>,</mo><mi>ϕ</mi></mrow></mfenced><mo>=</mo><mfenced open="(" close=")"><mrow><mi>u</mi><mo>,</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>u</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi></mrow></mfenced></math> </ephtml> .</p> <hd id="AN0145130973-16">Theorem 9.</hd> <p>Assume that (<emph>F</emph><subs>0</subs>) holds. In addition, the function <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>f</mi></math> </ephtml> satisfies the following assumptions:</p> <p>(<emph>F</emph><subs>2</subs>) There exists a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>></mo><mi mathvariant="normal">max</mi><mfenced open="{" close="}"><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>/</mo><mi>σ</mi><mo>,</mo><msup><mrow><mi>C</mi><mi>e</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>/</mo><mi>δ</mi><mi>ξ</mi></mrow></mfenced></math> </ephtml> such that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msub><mfenced open="(" close=")"><mrow><mi>α</mi></mrow></mfenced><mo>≤</mo><mn>0</mn></math> </ephtml> and</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq46"><mtd><mtext>(48)</mtext></mtd><mtd><mi>μ</mi><mfrac><mrow><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>6</mn></mrow></mfrac><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>e</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><msup><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>α</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo><</mo><mi>α</mi><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>(<emph>F</emph><subs>3</subs>) There exists a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>∈</mo><mfenced open="(" close=")"><mrow><mn>0</mn><mo>,</mo><mi>σ</mi><mi>α</mi><mo>−</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></mfenced></math> </ephtml> such that</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq47"><mtd><mtext>(49)</mtext></mtd><mtd><mi>μ</mi><mfrac><mrow><msup><mrow><mi>r</mi></mrow><mrow><msup><mrow><mo>∗</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup></mrow><mrow><mn>6</mn></mrow></mfrac><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>e</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><msup><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></mfenced><mi>d</mi><mi>s</mi><mo><</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>(<emph>F</emph><subs>4</subs>) <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi mathvariant="normal">lim</mi></mrow><mrow><mi>u</mi><mo>+</mo><mi>ϕ</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub><mfenced open="(" close=")"><mrow><mi>f</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ϕ</mi></mrow></mfenced><mo>/</mo><mfenced open="(" close=")"><mrow><mi>u</mi><mo>+</mo><mi>ϕ</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mo>+</mo><mo>∞</mo></math> </ephtml> , uniformly for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></math> </ephtml> .</p> <p>Then, (<reflink idref="bib1" id="ref23">1</reflink>) has at least two positive solution <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="(" close=")"><mrow><msub><mrow><mi>u</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mi>i</mi></mrow></msub></mrow></mfenced><mtext /><mfenced open="(" close=")"><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></mrow></mfenced></math> </ephtml> , which satisfies</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq48"><mtd><mtext>(50)</mtext></mtd><mtd><mn>0</mn><mo>≤</mo><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo><</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>,</mo><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></mrow></munder><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>></mo><mi>σ</mi><mi>α</mi><mo>−</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <hd id="AN0145130973-17">Proof.</hd> <p>From (<emph>F</emph><subs>2</subs>) and Theorem 8, it follows that there exists a solution <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>≥</mo><mn>0</mn></math> </ephtml> and</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq49"><mtd><mtext>(51)</mtext></mtd><mtd><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></mrow></munder><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>></mo><mi>σ</mi><mi>α</mi><mo>−</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Now, we apply Lemma 1 to prove the existence of another solution <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced></math> </ephtml> .</p> <p>Since <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo><</mo><mi>σ</mi><mi>α</mi><mo>−</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo><</mo><mi>α</mi></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msub><mfenced open="(" close=")"><mrow><mi>α</mi></mrow></mfenced></math> </ephtml> , then we can define the operator</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq50"><mtd><mtext>(52)</mtext></mtd><mtd><mover accent="true"><mi mathvariant="fraktur" fontstyle="italic">T</mi><mo stretchy="true">¯</mo></mover><mfenced open="(" close=")"><mrow><mi>u</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>F</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>u</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>For any <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>∈</mo><mi>∂</mi><msubsup><mrow><mi>B</mi></mrow><mrow><mi>K</mi></mrow><mrow><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msubsup></math> </ephtml> , it is obvious that</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq51"><mtd><mtext>(53)</mtext></mtd><mtd><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>u</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≤</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>u</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≤</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>6</mn></mrow></mfrac><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Then, we have</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq52"><mtd><mtext>(54)</mtext></mtd><mtd><mover accent="true"><mi mathvariant="fraktur" fontstyle="italic">T</mi><mo stretchy="true">¯</mo></mover><mfenced open="(" close=")"><mrow><mi>u</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>F</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>u</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≤</mo><mi>μ</mi><mfrac><mrow><msup><mrow><mi>r</mi></mrow><mrow><msup><mrow><mo>∗</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup></mrow><mrow><mn>6</mn></mrow></mfrac><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>e</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>f</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mo>,</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>H</mi><mfenced open="(" close=")"><mrow><mi>x</mi><mo>−</mo><mi>ω</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mi>x</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mo>−</mo><mi>ω</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≤</mo><mi>μ</mi><mfrac><mrow><msup><mrow><mi>r</mi></mrow><mrow><msup><mrow><mo>∗</mo></mrow><mrow><mn>2</mn></mrow></msup></mrow></msup></mrow><mrow><mn>6</mn></mrow></mfrac><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>e</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><msup><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></mfenced><mi>d</mi><mi>s</mi><mo><</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mfenced open="‖" close="‖"><mrow><mi>u</mi></mrow></mfenced><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>which implies that (a) of Lemma 1 holds.</p> <p>Since <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi mathvariant="normal">lim</mi></mrow><mrow><mi>u</mi><mo>+</mo><mi>ϕ</mi><mo>→</mo><msup><mrow><mn>0</mn></mrow><mrow><mo>+</mo></mrow></msup></mrow></msub><mfenced open="(" close=")"><mrow><mi>f</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ϕ</mi></mrow></mfenced><mo>/</mo><mfenced open="(" close=")"><mrow><mi>u</mi><mo>+</mo><mi>ϕ</mi></mrow></mfenced></mrow></mfenced><mo>=</mo><mo>+</mo><mo>∞</mo></math> </ephtml> , uniformly for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced></math> </ephtml> , there exists a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo><</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math> </ephtml> such that</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq53"><mtd><mtext>(55)</mtext></mtd><mtd><mi>f</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ϕ</mi></mrow></mfenced><mo>></mo><mi>M</mi><mfenced open="(" close=")"><mrow><mi>u</mi><mo>+</mo><mi>ϕ</mi></mrow></mfenced><mo>,</mo><mi class="cond" /><mtext>for</mtext><mtext /><mn>0</mn><mo><</mo><mi>u</mi><mo>+</mo><mi>ϕ</mi><mo>≤</mo><msub><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>M</mi></math> </ephtml> satisfies</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq54"><mtd><mtext>(56)</mtext></mtd><mtd><mi>M</mi><mi>δ</mi><mi>σ</mi><mo>⋅</mo><munder><mrow><mi mathvariant="normal">max</mi></mrow><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>1</mn></mrow></munder><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><mo>⋅</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mn>1</mn><mo>+</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mi>θ</mi></mrow><mrow><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>></mo><mn>1</mn><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Let <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>η</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><mn>1</mn></math> </ephtml> , now we prove that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>u</mi><mo>≠</mo><mover accent="true"><mi mathvariant="fraktur" fontstyle="italic">T</mi><mo stretchy="true">¯</mo></mover><mi>u</mi><mo>+</mo><mi>λ</mi><mo>,</mo><mtext>for</mtext><mtext /><mi>u</mi><mo>∈</mo><mi>∂</mi><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>/</mo><mn>2</mn></mrow></msubsup><mtext /><mtext>and</mtext><mtext /><mi>λ</mi><mo>></mo><mn>0</mn></math> </ephtml> . On the contrary, if there exists a pair of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>∈</mo><mi>∂</mi><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>/</mo><mn>2</mn></mrow></msubsup><mtext /><mtext>and</mtext><mtext /><msub><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>></mo><mn>0</mn><mtext /><mtext>such</mtext><mtext /><mtext>that</mtext><mtext /><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><mover accent="true"><mi mathvariant="fraktur" fontstyle="italic">T</mi><mo stretchy="true">¯</mo></mover><mfenced open="(" close=")"><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow></msub></math> </ephtml> , then from (iv) of Lemma 7, it follows that</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq55"><mtd><mtext>(57)</mtext></mtd><mtd><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>≤</mo><mfrac><mrow><msub><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msub></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><msub><mrow><mi>ϕ</mi></mrow><mrow><mn>0</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>=</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo><</mo><mfrac><mrow><msub><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msub></mrow><mrow><mn>12</mn></mrow></mfrac><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Furthermore, we have</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq56"><mtd><mtext>(58)</mtext></mtd><mtd><mfenced open="‖" close="‖"><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced><mo>=</mo><mfenced open="‖" close="‖"><mrow><mover accent="true"><mi mathvariant="fraktur" fontstyle="italic">T</mi><mo stretchy="true">~</mo></mover><mfenced open="(" close=")"><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced></mrow></mfenced><mo>+</mo><msub><mrow><mi>λ</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>≥</mo><mfenced open="‖" close="‖"><mrow><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>f</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>u</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mo>,</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>u</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>s</mi></mrow></mfenced><mo>≥</mo><mi>δ</mi><munder><mrow><mi mathvariant="normal">max</mi></mrow><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>1</mn></mrow></munder><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>f</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>u</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mo>,</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>u</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≥</mo><mi>δ</mi><munder><mrow><mi mathvariant="normal">max</mi></mrow><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>1</mn></mrow></munder><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>M</mi><mfenced open="[" close="]"><mrow><mi>u</mi><mo>,</mo><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mo>+</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>u</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≥</mo><mi>δ</mi><munder><mrow><mi mathvariant="normal">max</mi></mrow><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>1</mn></mrow></munder><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>M</mi><mfenced open="[" close="]"><mrow><mi>u</mi><mo>,</mo><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mo>+</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>u</mi><mfenced open="(" close=")"><mrow><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≥</mo><mi>M</mi><mi>δ</mi><mi>σ</mi><mo>⋅</mo><munder><mrow><mi mathvariant="normal">max</mi></mrow><mrow><mn>0</mn><mo>≤</mo><mi>t</mi><mo>≤</mo><mn>1</mn></mrow></munder><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><mo>⋅</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mfenced open="[" close="]"><mrow><mn>1</mn><mo>+</mo><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></msubsup><mi>K</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>τ</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>⋅</mo><mfenced open="‖" close="‖"><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced><mo>></mo><mfenced open="‖" close="‖"><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>which contradicts with the statement (iii) of Lemma 7. So (b) holds.</p> <p>Therefore, from Lemma 1, we can get that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mover accent="true"><mi mathvariant="bold">T</mi><mo stretchy="true">~</mo></mover></math> </ephtml> has at least one positive fixed-point <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>∈</mo><mover accent="true"><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>K</mi></mrow><mrow><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></msubsup><mo stretchy="true">¯</mo></mover><mo>\</mo><msubsup><mrow><mi>B</mi></mrow><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msub><mo>/</mo><mn>2</mn></mrow></msubsup></math> </ephtml> . Hence, the inequalities hold</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq57"><mtd><mtext>(59)</mtext></mtd><mtd><mfenced open="‖" close="‖"><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfenced><mo>≥</mo><mfrac><mrow><msub><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msub></mrow><mrow><mn>2</mn></mrow></mfrac><mo>,</mo><mi>σ</mi><mfrac><mrow><msub><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msub></mrow><mrow><mn>2</mn></mrow></mfrac><mo>≤</mo><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></mrow></munder><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>≤</mo><mi>σ</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>On the other hand, since <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>σ</mi><mfenced open="‖" close="‖"><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfenced><mo>≤</mo><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></mrow></munder><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>≤</mo><mi>σ</mi><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math> </ephtml> , we have <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="‖" close="‖"><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfenced><mo>≤</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></math> </ephtml> .</p> <p>Finally, since</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq58"><mtd><mtext>(60)</mtext></mtd><mtd><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mi>θ</mi><mo>,</mo><mn>1</mn><mo>−</mo><mi>θ</mi></mrow></mfenced></mrow></munder><msub><mrow><mi>u</mi></mrow><mrow><mn>2</mn></mrow></msub><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mo>≤</mo><mi>σ</mi><mi>α</mi><mo>−</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>></mo><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>,</mo><mfenced open="‖" close="‖"><mrow><msub><mrow><mi>u</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></mfenced><mo>≤</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>(<reflink idref="bib1" id="ref24">1</reflink>) has at least two positive solutions.</p> <hd id="AN0145130973-18">4. Examples</hd> <p></p> <hd id="AN0145130973-19">Example 10.</hd> <p>Let us consider the following system:</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="EEq60"><mtd><mtext>(61)</mtext></mtd><mtd><mfenced open="{" close=""><mrow><mtable class="cases"><mtr><mtd columnalign="left"><mo>−</mo><msup><mrow><mi>u</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>+</mo><mi>u</mi><mo>=</mo><mi>ϕ</mi><mi>u</mi><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup><mo>+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi mathvariant="normal">cos</mi><mi>π</mi><mi>ϕ</mi><mo>−</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mn>0</mn><mo><</mo><mi>t</mi><mo><</mo><mn>1</mn><mo>,</mo></mtd></mtr><mtr><mtd columnalign="left"><mo>−</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>″</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mi>u</mi><mo>,</mo></mtd></mtr><mtr><mtd columnalign="left"><mi>ϕ</mi><mfenced open="(" close=")"><mrow><mn>0</mn></mrow></mfenced><mo>=</mo><mi>ϕ</mi><mfenced open="(" close=")"><mrow><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>,</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>″</mo></mrow></msup><mfenced open="(" close=")"><mrow><mn>0</mn></mrow></mfenced><mo>=</mo><msup><mrow><mi>ϕ</mi></mrow><mrow><mo>″</mo></mrow></msup><mfenced open="(" close=")"><mrow><mn>1</mn></mrow></mfenced><mo>=</mo><mn>0</mn><mo>,</mo></mtd></mtr></mtable></mrow></mfenced></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>ρ</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>f</mi><mo>:</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced><mo>×</mo><msubsup><mrow><mi>ℝ</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>2</mn></mrow></msubsup><mo>⟶</mo><mi>ℝ</mi></math> </ephtml> is continuous, and</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq59"><mtd><mtext>(62)</mtext></mtd><mtd><mi>f</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mfenced open="(" close=")"><mrow><msup><mrow><mi>e</mi></mrow><mrow><mi>u</mi></mrow></msup><mo>+</mo><mi mathvariant="normal">cos</mi><mi>π</mi><mi>ϕ</mi><mo>−</mo><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfenced><mo>≥</mo><mrow><mo>−</mo></mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><msup><mrow><mi>t</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mrow><mo>−</mo></mrow><mi>e</mi><mfenced open="(" close=")"><mrow><mi>t</mi></mrow></mfenced><mi class="relop" /><mtext>for</mtext><mtext /><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ϕ</mi></mrow></mfenced><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced><mo>×</mo><msubsup><mrow><mi>ℝ</mi></mrow><mrow><mo>+</mo></mrow><mrow><mn>2</mn></mrow></msubsup><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>It is obvious that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="(" close=")"><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>0</mn></mrow></msub></mrow></mfenced></math> </ephtml> holds. Via some computations, we have</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq60"><mtd><mtext>(63)</mtext></mtd><mtd><msup><mrow><mi>e</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mo>,</mo><mi>C</mi><mo>=</mo><mn>1</mn><mo>,</mo><mi>δ</mi><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi mathvariant="normal">sinh</mi><mn>1</mn></mrow></mfrac><mo>,</mo><msubsup><mrow><mi>J</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><msubsup><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>=</mo><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>−</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mfenced open="(" close=")"><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></mfenced></mrow></msup></mrow><mrow><msup><mrow><mi>e</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><mo>+</mo><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mfenced open="(" close=")"><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></mfenced></mrow></msup></mrow></mfrac><mo><</mo><mn>1</mn><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>Choosing <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>θ</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>4</mn><mo>∈</mo><mfenced open="(" close=")"><mrow><mn>0</mn><mo>,</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></mfenced><mo>,</mo><mi>ξ</mi><mo>=</mo><mn>1</mn><mo>/</mo><mn>2</mn></math> </ephtml> . Then, we have</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq61"><mtd><mtext>(64)</mtext></mtd><mtd><mi>σ</mi><mo>=</mo><munder><mrow><mi mathvariant="normal">min</mi></mrow><mrow><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>1</mn><mo>/</mo><mn>4</mn><mo>,</mo><mn>3</mn><mo>/</mo><mn>4</mn></mrow></mfenced></mrow></munder><mfrac><mrow><mi>δ</mi></mrow><mrow><mi>C</mi></mrow></mfrac><mi>G</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></mfenced><mo>=</mo><mfrac><mrow><mi mathvariant="normal">sinh</mi><mfenced open="(" close=")"><mrow><mn>3</mn><mo>/</mo><mn>4</mn></mrow></mfenced><mi mathvariant="normal">sinh</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></mfenced></mrow><mrow><msup><mrow><mfenced open="(" close=")"><mrow><mi mathvariant="normal">sinh</mi><mn>1</mn></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></mrow></mfrac><mo>,</mo></mtd></mlabeledtr><mtr><mtd><msup><mrow><mi>ω</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mfrac><mrow><mi mathvariant="normal">sinh</mi><mn>1</mn><mo>−</mo><mn>2</mn><mi mathvariant="normal">sinh</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></mfenced></mrow><mrow><mi mathvariant="normal">sinh</mi><mn>1</mn></mrow></mfrac><mo>.</mo></mtd></mtr></mtable></math> </ephtml> </p> <p>Furthermore, we have</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq62"><mtd><mtext>(65)</mtext></mtd><mtd><mfrac><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow><mrow><mi>σ</mi></mrow></mfrac><mo>=</mo><mfrac><mrow><mfenced open="(" close=")"><mrow><mi mathvariant="normal">sinh</mi><mn>1</mn><mo>−</mo><mn>2</mn><mi mathvariant="normal">sinh</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></mfenced></mrow></mfenced><mi mathvariant="normal">sinh</mi><mn>1</mn></mrow><mrow><mi mathvariant="normal">sinh</mi><mfenced open="(" close=")"><mrow><mn>3</mn><mo>/</mo><mn>4</mn></mrow></mfenced><mi mathvariant="normal">sinh</mi><mfenced open="(" close=")"><mrow><mn>1</mn><mo>/</mo><mn>4</mn></mrow></mfenced></mrow></mfrac><mo><</mo><mn>3</mn><mo>,</mo></mtd></mlabeledtr><mtr><mtd><mfrac><mrow><msup><mrow><mi>C</mi><mi>e</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow><mrow><mi>δ</mi><mi>ξ</mi></mrow></mfrac><mo><</mo><mi mathvariant="normal">sin</mi><mn>1</mn><mfenced open="(" close=")"><mrow><msubsup><mrow><mi>J</mi></mrow><mrow><mn>1</mn></mrow><mrow><mo>∗</mo></mrow></msubsup><mo>+</mo><msubsup><mrow><mi>J</mi></mrow><mrow><mn>2</mn></mrow><mrow><mo>∗</mo></mrow></msubsup></mrow></mfenced><mo><</mo><mn>3</mn><mo>.</mo></mtd></mtr></mtable></math> </ephtml> </p> <p>Choosing <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>α</mi><mo>=</mo><mn>3</mn><mo>></mo><mi mathvariant="normal">max</mi><mfenced open="{" close="}"><mrow><msup><mrow><mi>ω</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>/</mo><mi>σ</mi><mo>,</mo><msup><mrow><mi>C</mi><mi>e</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>/</mo><mi>δ</mi><mi>ξ</mi></mrow></mfenced><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup><mo>=</mo><mn>3</mn><mo>/</mo><mn>10</mn><mo>∈</mo><mfenced open="(" close=")"><mrow><mn>0</mn><mo>,</mo><mi>σ</mi><mi>α</mi><mo>−</mo><msup><mrow><mi>ω</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></mfenced></math> </ephtml> . Then,</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq63"><mtd><mtext>(66)</mtext></mtd><mtd><msub><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msub><mfenced open="(" close=")"><mrow><mn>3</mn></mrow></mfenced><mo>≥</mo><mn>0</mn><mo>,</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mn>3</mn></mrow></mfenced><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mfenced open="(" close=")"><mrow><msup><mrow><mi>e</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mo>,</mo></mtd></mlabeledtr><mtr><mtd><msub><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msub><mfenced open="(" close=")"><mrow><mfrac><mrow><mn>3</mn></mrow><mrow><mn>10</mn></mrow></mfrac></mrow></mfenced><mo>≥</mo><mn>0</mn><mo>,</mo><msup><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>10</mn></mrow></mfrac></mrow></mfenced><mo>=</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mfenced open="(" close=")"><mrow><msup><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>10</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfenced><mo>.</mo></mtd></mtr></mtable></math> </ephtml> </p> <p>It is easy to get</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq64"><mtd><mtext>(67)</mtext></mtd><mtd><mi>μ</mi><mfrac><mrow><msup><mrow><mi>α</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>6</mn></mrow></mfrac><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>e</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><msup><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>α</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≤</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>2</mn></mrow></mfrac><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>2</mn><mi mathvariant="normal">sinh</mi><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>2</mn><mi mathvariant="normal">sinh</mi><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>2</mn><mi mathvariant="normal">sinh</mi><mn>1</mn></mrow></mfrac><mfenced open="[" close="]"><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mfenced open="(" close=")"><mrow><msup><mrow><mi>e</mi></mrow><mrow><mn>3</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced><mo>≤</mo><mn>3</mn><mo>,</mo></mtd></mlabeledtr><mlabeledtr id="eq65"><mtd><mtext>(68)</mtext></mtd><mtd><mi>μ</mi><mfrac><mrow><msup><mrow><mfenced open="(" close=")"><mrow><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></mfenced></mrow><mrow><mn>2</mn></mrow></msup></mrow><mrow><mn>6</mn></mrow></mfrac><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><mi>e</mi><mfenced open="(" close=")"><mrow><mi>s</mi></mrow></mfenced><mi>d</mi><mi>s</mi><mo>+</mo><mi>C</mi><msubsup><mrow><mo>∫</mo></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn></mrow></msubsup><mi>G</mi><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><mi>s</mi></mrow></mfenced><msup><mrow><mi>Φ</mi></mrow><mrow><mo>∗</mo></mrow></msup><mfenced open="(" close=")"><mrow><mi>s</mi><mo>,</mo><msup><mrow><mi>r</mi></mrow><mrow><mo>∗</mo></mrow></msup></mrow></mfenced><mi>d</mi><mi>s</mi><mo>≤</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>200</mn></mrow></mfrac><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>2</mn><mi mathvariant="normal">sinh</mi><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>2</mn><mi mathvariant="normal">sinh</mi><mn>1</mn></mrow></mfrac><mo>+</mo><mfrac><mrow><msup><mrow><mi>e</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow><mrow><mn>2</mn><mi mathvariant="normal">sinh</mi><mn>1</mn></mrow></mfrac><mfenced open="[" close="]"><mrow><mfrac><mrow><mn>1</mn></mrow><mrow><mn>4</mn></mrow></mfrac><mfenced open="(" close=")"><mrow><msup><mrow><mi>e</mi></mrow><mrow><mn>3</mn><mo>/</mo><mn>10</mn></mrow></msup><mo>+</mo><mn>1</mn></mrow></mfenced></mrow></mfenced><mo>≤</mo><mfrac><mrow><mn>3</mn></mrow><mrow><mn>10</mn></mrow></mfrac><mo>,</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>which implies that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="(" close=")"><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></mfenced></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="(" close=")"><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></mfenced></math> </ephtml> hold.</p> <p>Finally, it is obvious that</p> <p> <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mtable><mlabeledtr id="eq66"><mtd><mtext>(69)</mtext></mtd><mtd><munder><mrow><mi mathvariant="normal">lim</mi></mrow><mrow><mi>u</mi><mo>+</mo><mi>ϕ</mi><mo>→</mo><mn>0</mn><mo>+</mo></mrow></munder><mfrac><mrow><mi>f</mi><mfenced open="(" close=")"><mrow><mi>t</mi><mo>,</mo><mi>u</mi><mo>,</mo><mi>ϕ</mi></mrow></mfenced></mrow><mrow><mi>u</mi><mo>+</mo><mi>ϕ</mi></mrow></mfrac><mo>=</mo><mrow><mo>+</mo></mrow><mrow><mo>∞</mo></mrow><mrow><mo>,</mo></mrow><mi class="cond" /><mtext>uniformly</mtext><mtext /><mtext>for</mtext><mtext /><mi>t</mi><mo>∈</mo><mfenced open="[" close="]"><mrow><mn>0</mn><mo>,</mo><mn>1</mn></mrow></mfenced><mo>.</mo></mtd></mlabeledtr></mtable></math> </ephtml> </p> <p>So <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mfenced open="(" close=")"><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></mfenced></math> </ephtml> holds.</p> <p>Therefore, by Theorem 9, (<reflink idref="bib61" id="ref25">61</reflink>) has two positive solutions.</p> <hd id="AN0145130973-20">Data Availability</hd> <p>The data used to support the findings of this study are available from the corresponding author upon request.</p> <hd id="AN0145130973-21">Conflicts of Interest</hd> <p>The authors declare that they have no competing interests.</p> <hd id="AN0145130973-22">Authors' Contributions</hd> <p>All the authors contributed equally and significantly in writing this article. All the authors read and approved the final manuscript.</p> <hd id="AN0145130973-23">Acknowledgments</hd> <p>The authors were supported by the Fundamental Research Funds for the Central Universities (B200202003), the Guizhou Provincial Science and Technology Fund (QKH-JICHU[2017], Grant no. 1408) and the Scientific Research Starting Foundation for Doctorate Research from Shandong Jiaotong University.</p> <ref id="AN0145130973-24"> <title> REFERENCES </title> <blist> <bibl id="bib1" idref="ref1" type="bt">1</bibl> <bibtext> Benguria R., Brezis H., Lieb E. H. The Thomas-Fermi-Von Weizsäcker theory of atoms and molecules. Communications in Mathematical Physics. 1981; 79(2): 167-180, 10.1007/BF01942059, 2-s2.0-0000217807</bibtext> </blist> <blist> <bibl id="bib2" type="bt">2</bibl> <bibtext> Lieb E. H. Thomas-Fermi and related theories of atoms and molecules. Reviews of Modern Physics. 1981; 53(4): 603-641, 10.1103/revmodphys.53.603, 2-s2.0-33847043281</bibtext> </blist> <blist> <bibl id="bib3" idref="ref2" type="bt">3</bibl> <bibtext> Markowich P., Ringhofer C., Schmeiser C. Semiconductor Equations. 1990: New York; Springer-Verlag, 10.1007/978-3-7091-6961-2</bibtext> </blist> <blist> <bibl id="bib4" idref="ref3" type="bt">4</bibl> <bibtext> Kastenberg W. E., Chambré P. L. On the stability of nonlinear space-dependent reactor kinetics. Nuclear Science and Engineering. 2017; 31(1): 67-79, 10.13182/nse68-a18009</bibtext> </blist> <blist> <bibl id="bib5" idref="ref5" type="bt">5</bibl> <bibtext> Li Y., Li F. Nontrivial solutions to a class of systems of second-order differential equations. Journal of Mathematical Analysis and Applications. 2012; 388(1): 410-419, 10.1016/j.jmaa.2011.11.002, 2-s2.0-84455169518</bibtext> </blist> <blist> <bibl id="bib6" idref="ref6" type="bt">6</bibl> <bibtext> Chen R., Ma R. Positive solutions of the second-order differential systems in reactor dynamics. Applied Mathematics and Computation. 2012; 219(8): 3882-3892, 10.1016/j.amc.2012.10.023, 2-s2.0-84870067057</bibtext> </blist> <blist> <bibl id="bib7" type="bt">7</bibl> <bibtext> Chen R., Ma R. Global bifurcation of positive radial solutions for an elliptic system in reactor dynamics. Computers & Mathematics with Applications. 2013; 65(8): 1119-1128, 10.1016/j.camwa.2013.01.038, 2-s2.0-84876129035</bibtext> </blist> <blist> <bibl id="bib8" idref="ref7" type="bt">8</bibl> <bibtext> Gu Y., Wang M. Existence of positive stationary solutions and threshold results for a reaction-diffusion system. Journal of Differential Equations. 1996; 130(2): 277-291, 10.1006/jdeq.1996.0143, 2-s2.0-0030595267</bibtext> </blist> <blist> <bibl id="bib9" type="bt">9</bibl> <bibtext> Wang F., An Y. Positive solutions for a second-order differential system. Journal of Mathematical Analysis and Applications. 2011; 373(2): 370-375, 10.1016/j.jmaa.2010.07.031, 2-s2.0-77956616336</bibtext> </blist> <blist> <bibtext> Wang F., An Y. On positive solutions for a second order differential system with indefinite weight. Applied Mathematics and Computation. 2015; 259, 753-761, 10.1016/j.amc.2015.02.089, 2-s2.0-84925711072</bibtext> </blist> <blist> <bibtext> Wang F., Wang Y. Existence of positive stationary solutions for a reaction-diffusion system. Boundary Value Problems. 2016; 2016, 11, 10.1186/s13661-015-0511-5, 2-s2.0-84954477290</bibtext> </blist> <blist> <bibtext> Castro A., Gadam S. Branches of radial solutions for semipositone problems. Journal Differential Equations. 1995; 120(1): 30-45, 10.1006/jdeq.1995.1104, 2-s2.0-0001857085</bibtext> </blist> <blist> <bibtext> Castro A., Hassanpour M., Shivaji R. Uniqueness of non-negative solutions for a semipositone problem with concave nonlinearity. Communications in Partial Differential Equations. 1995; 20(11-12): 1927-1936, 10.1080/03605309508821157, 2-s2.0-0003171886</bibtext> </blist> <blist> <bibtext> Dogan A. The existence of positive solutions for a semipositone second-order m-point boundary value problem. Dynamic Systems and Applications. 2015; 24(4): 419-428</bibtext> </blist> <blist> <bibtext> Lee E. K., Sankar L., Shivaji R. Positive solutions for infinite semipositone problems on exterior domains. Differential Integral Equation. 2011; 24(9-10): 861-875</bibtext> </blist> <blist> <bibtext> Ma R., Zhu B. Existence of positive solutions for a semipositone boundary value problem on the half-line. Computers & Mathematics with Applications. 2009; 58(8): 1672-1686, 10.1016/j.camwa.2009.07.005, 2-s2.0-69749095632</bibtext> </blist> <blist> <bibtext> Guo D., Lakshmikantham V. Nonlinear Problems in Abstract Cones. 1988: New York; Academic Press</bibtext> </blist> <blist> <bibtext> Li Y. Positive solutions of fourth-order boundary value problems with two parameters. Journal of Mathematical Analysis and Applications. 2003; 281(2): 477-484, 10.1016/S0022-247X(03)00131-8, 2-s2.0-0038687780</bibtext> </blist> <blist> <bibtext> Infante G., Webb J. R. L. Nonzero solutions of Hammerstein integral equations with discontinuous kernels. Journal of Mathematical Analysis and Applications. 2002; 272(1): 30-42, 10.1016/s0022-247x(02)00125-7, 2-s2.0-0036700691</bibtext> </blist> <blist> <bibtext> Lan K. Q. Multiple positive solutions of semilinear differential equations with singularities. Journal of the London Mathematical Society. 2001; 63(3): 690-704, 10.1112/S002461070100206X, 2-s2.0-0035379593</bibtext> </blist> <blist> <bibtext> Wang H. On the number of positive solutions of nonlinear systems. Journal of Mathematical Analysis and Applications. 2003; 281(1): 287-306, 10.1016/S0022-247X(03)00100-8, 2-s2.0-0038346720</bibtext> </blist> </ref> <aug> <p>By Yunhai Wang and Xu Yang</p> <p>Reported by Author; Author</p> </aug> <nolink nlid="nl1" bibid="bib11" firstref="ref8"></nolink> <nolink nlid="nl2" bibid="bib12" firstref="ref11"></nolink> <nolink nlid="nl3" bibid="bib16" firstref="ref12"></nolink> <nolink nlid="nl4" bibid="bib17" firstref="ref15"></nolink> <nolink nlid="nl5" bibid="bib19" firstref="ref18"></nolink> <nolink nlid="nl6" bibid="bib21" firstref="ref21"></nolink> <nolink nlid="nl7" bibid="bib61" firstref="ref25"></nolink>
CustomLinks:
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=23148896&ISBN=&volume=2020&issue=&date=20200101&spage=&pages=&title=Journal of Function Spaces&atitle=Analysis%20on%20Existence%20of%20Positive%20Solutions%20for%20a%20Class%20Second%20Order%20Semipositone%20Differential%20Equations&aulast=Yunhai%20Wang&id=DOI:10.1155/2020/7210608
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/c7e93c497d8b43c39c2f0d35d7a89fb2
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.7e93c497d8b43c39c2f0d35d7a89fb2
RelevancyScore: 905
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 905.017944335938
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Analysis on Existence of Positive Solutions for a Class Second Order Semipositone Differential Equations
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Yunhai+Wang%22">Yunhai Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Xu+Yang%22">Xu Yang</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Journal of Function Spaces, Vol 2020 (2020)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Hindawi Limited, 2020.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2020
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Mathematics
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Mathematics%22">Mathematics</searchLink><br /><searchLink fieldCode="DE" term="%22QA1-939%22">QA1-939</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: In this paper, we study the existence of positive solutions of the following second-order semipositone system (see equation 1). By applying a well-known fixed-point theorem, we prove that the problem admits at least one positive solution, if f is bounded below.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2314-8896<br />2314-8888
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://doaj.org/toc/2314-8896; https://doaj.org/toc/2314-8888
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1155/2020/7210608
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/c7e93c497d8b43c39c2f0d35d7a89fb2" linkWindow="_blank">https://doaj.org/article/c7e93c497d8b43c39c2f0d35d7a89fb2</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.7e93c497d8b43c39c2f0d35d7a89fb2
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.7e93c497d8b43c39c2f0d35d7a89fb2
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1155/2020/7210608
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Mathematics
        Type: general
      – SubjectFull: QA1-939
        Type: general
    Titles:
      – TitleFull: Analysis on Existence of Positive Solutions for a Class Second Order Semipositone Differential Equations
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Yunhai Wang
      – PersonEntity:
          Name:
            NameFull: Xu Yang
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2020
          Identifiers:
            – Type: issn-print
              Value: 23148896
            – Type: issn-print
              Value: 23148888
          Numbering:
            – Type: volume
              Value: 2020
          Titles:
            – TitleFull: Journal of Function Spaces
              Type: main
ResultId 1