Permanent Deformation and Its Unified Model of Coal Gangue Subgrade Filler under Traffic Cyclic Loading

Bibliographic Details
Title: Permanent Deformation and Its Unified Model of Coal Gangue Subgrade Filler under Traffic Cyclic Loading
Authors: Zong-Tang Zhang, Yan-Hao Wang, Wen-Hua Gao, Wei Hu, Shun-Kai Liu
Source: Applied Sciences, Vol 13, Iss 7, p 4128 (2023)
Publisher Information: MDPI AG, 2023.
Publication Year: 2023
Collection: LCC:Technology
LCC:Engineering (General). Civil engineering (General)
LCC:Biology (General)
LCC:Physics
LCC:Chemistry
Subject Terms: dynamic behaviors, cyclic loading, permanent deformation, coal gangue subgrade filler, large-scale triaxial test, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999
More Details: Using coal gangue as subgrade filler can not only solve the environmental problems of coal mine waste accumulation but also decrease the subgrade cost, which has important theoretical and practical significance. A series of cyclic triaxial tests was carried out using the large-scale dynamic and static triaxial apparatus (LSDSTA) to investigate the permanent deformation (ε) of coal gangue subgrade filler (CGSF) under cyclic loading. Experimental grading was designed by using the fractal model grading equation (FMGE), and then well-grading limits of CGSF were captured. The relationship curve between ε and the numbers of cyclic loading (N) can be divided into three stages, i.e., the rapid growth phase, the deceleration growth phase, and the approaching stability phase. N = 1000 can be used as the criterion for reaching the stable stage of CGSF. The effect of confining pressure (σ3′) on ε is related to the level of σ3′. The effect of σ3′ on ε is significant when σ3′ is smaller, whereas the influence of σ3′ on ε is smaller when σ3′ is larger. Furthermore, the influence of grading (Df) on ε of coal gangue samples is significant. With the increase of Df, ε first increases and then decreases, reflecting that there is an obvious optimal grading for coal gangue samples under cyclic loading. Moreover, the effect of compaction degree (Dc) on ε of CGSF depends on the level of Dc. ε is hardly affected when Dc is smaller, whereas increasing Dc has a significant effect on restraining ε when Dc is bigger. In addition, according to the analysis of the permanent deformation curve for CGSF, the unified calculation model of permanent deformation for CGSF under cyclic loading is established. Compared with the existing permanent deformation models, the proposed model in this paper can better describe the permanent deformation of CGSF under cyclic loading. Finally, the model parameters are analyzed, and the model is verified.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2076-3417
Relation: https://www.mdpi.com/2076-3417/13/7/4128; https://doaj.org/toc/2076-3417
DOI: 10.3390/app13074128
Access URL: https://doaj.org/article/728fa44ef8ce47f6871c1692eb437118
Accession Number: edsdoj.728fa44ef8ce47f6871c1692eb437118
Database: Directory of Open Access Journals
Full text is not displayed to guests.
FullText Links:
  – Type: pdflink
    Url: https://content.ebscohost.com/cds/retrieve?content=AQICAHjPtM4BHU3ZchRwgzYmadcigk49r9CVlbU7V5F6lgH7WwF2IIEi1P26l8c_6GhoMZ72AAAA4jCB3wYJKoZIhvcNAQcGoIHRMIHOAgEAMIHIBgkqhkiG9w0BBwEwHgYJYIZIAWUDBAEuMBEEDDv3XvYSofkSBbDN3AIBEICBmi16S61S8teaRcspiH_fiOMx5CdLzCVIWMflhtIObJByNr7npl9kXB-CuaA178bfXDnzE9e76cvYegbBVoH_WfZrYDvQrNTuU8v5cHkroN1qS5d-HuqdAmX5iB0ncJkaoxqai92TpZuwS4Y0zue6rU35f1WN9hRG7e4xUa9OUcdqLRpEZ3WUB5gtNH6sphjJRA-Ky5-K3YpjyzA=
Text:
  Availability: 1
  Value: <anid>AN0163038013;[fdtu]01apr.23;2023Apr14.07:28;v2.2.500</anid> <title id="AN0163038013-1">Permanent Deformation and Its Unified Model of Coal Gangue Subgrade Filler under Traffic Cyclic Loading </title> <p>Using coal gangue as subgrade filler can not only solve the environmental problems of coal mine waste accumulation but also decrease the subgrade cost, which has important theoretical and practical significance. A series of cyclic triaxial tests was carried out using the large-scale dynamic and static triaxial apparatus (LSDSTA) to investigate the permanent deformation (ε) of coal gangue subgrade filler (CGSF) under cyclic loading. Experimental grading was designed by using the fractal model grading equation (FMGE), and then well-grading limits of CGSF were captured. The relationship curve between ε and the numbers of cyclic loading (N) can be divided into three stages, i.e., the rapid growth phase, the deceleration growth phase, and the approaching stability phase. N = 1000 can be used as the criterion for reaching the stable stage of CGSF. The effect of confining pressure ( σ 3 ′ ) on ε is related to the level of σ 3 ′ . The effect of σ 3 ′ on ε is significant when σ 3 ′ is smaller, whereas the influence of σ 3 ′ on ε is smaller when σ 3 ′ is larger. Furthermore, the influence of grading ( D f ) on ε of coal gangue samples is significant. With the increase of D f , ε first increases and then decreases, reflecting that there is an obvious optimal grading for coal gangue samples under cyclic loading. Moreover, the effect of compaction degree ( D c ) on ε of CGSF depends on the level of D c . ε is hardly affected when D c is smaller, whereas increasing D c has a significant effect on restraining ε when D c is bigger. In addition, according to the analysis of the permanent deformation curve for CGSF, the unified calculation model of permanent deformation for CGSF under cyclic loading is established. Compared with the existing permanent deformation models, the proposed model in this paper can better describe the permanent deformation of CGSF under cyclic loading. Finally, the model parameters are analyzed, and the model is verified.</p> <p>Keywords: dynamic behaviors; cyclic loading; permanent deformation; coal gangue subgrade filler; large-scale triaxial test</p> <hd id="AN0163038013-2">1. Introduction</hd> <p>Coal gangue is a waste material associated with the process of coal mine construction, coal exploitation, accounting for 15–20% of coal production. Now, more than 6 billion tons of coal gangue are accumulated on the surface of mining areas in China, and its emission has leaped to the top of China's industrial solid waste [[<reflink idref="bib1" id="ref1">1</reflink>], [<reflink idref="bib3" id="ref2">3</reflink>]]. However, compared with the amount of released coal gangue, the utilization rate of coal gangue in China is low, resulting in a large amount of surplus coal gangue piled up on the useful land for a long time. The long-term accumulation of coal gangue has caused great harm to the surrounding environment [[<reflink idref="bib4" id="ref3">4</reflink>]]: ① A large number of useful land resources (such as cultivated land, forest land, and mining sites) are occupied. ② Dust particles easily float in the air, and coal gangue self-ignition produces many harmful gases, resulting in serious air pollution. ③ The piled-high coal gangue easily causes landslides, debris flow and other geological disasters. ④ Accumulated coal gangue seriously affects the surrounding landscape environment. Therefore, the effective utilization of coal gangue has great theoretical and practical significance.</p> <p>The effective utilization of coal gangue waste has always been a hot topic that concerns many scholars. The physical and chemical characteristics of coal gangue are similar to natural gravel, so coal gangue can be broken down into a coarse aggregate of concrete, which can decrease the exploitation of natural gravel but can also save costs and avoid a series of hazards caused by it [[<reflink idref="bib6" id="ref4">6</reflink>], [<reflink idref="bib8" id="ref5">8</reflink>]]. Hence, the study on coal gangue concrete has been focused on by many scholars in recent years [[<reflink idref="bib9" id="ref6">9</reflink>]], and the results indicate that the mechanical behaviors of coal gangue concrete, made by replacing a certain amount of gravel with coal gangue, are close to that of ordinary concrete of the same grade. Zhao et al. [[<reflink idref="bib11" id="ref7">11</reflink>]] investigated the effect of partial replacement of fly ash with natural loess on gangue-cemented paste backfill (GCPB) performance. Gangue-cemented paste backfill specimens with varying loess doses were produced, and then the rheological properties, macroscopic strength, and microstructural evolution of GCPB were examined. Zhao et al. [[<reflink idref="bib12" id="ref8">12</reflink>]] studied the activation and hydration mechanisms of composite activated coal gangue geopolymer, and the results show that coal gangue can be employed as a primary cementitious material after being modified by the proposed activation method. Su et al. [[<reflink idref="bib13" id="ref9">13</reflink>]] studied the influence of thermally activated coal gangue powder on the structure of the interfacial transition zone in concrete.</p> <p>However, compared with traditional concrete, the investigation of the coal gangue concrete still shows many deficiencies. The consumption of coal gangue used as subgrade filler is tremendous, which can effectively solve the problem of coal gangue accumulation. Chen et al. [[<reflink idref="bib14" id="ref10">14</reflink>]] studied the effect of the compactive effort and initial particle gradings on the particle size distribution of mineral waste slag based on screening tests and analyzed the effects of different factors such as the compactive effort, moisture content, coarse grain content (CGC, mass proportion of particles with sizes greater than 5 mm), and forming methods on the engineering properties of mineral waste slag to determine the reasonable roadbed construction parameters. In addition, the research on coarse aggregate subgrade filler has a great reference value for coal gangue subgrade filler [[<reflink idref="bib15" id="ref11">15</reflink>], [<reflink idref="bib17" id="ref12">17</reflink>]].</p> <p>As mentioned above, coal gangue is widely used as subgrade filler. The coal gangue subgrade is affected by the traffic dynamic loading in the actual environment. However, there is little research reporting the dynamic behaviors of coal gangue, especially considering coarse particles, used as subgrade filler under traffic cyclic loading. Hence, a series of cyclic triaxial tests was carried out using the LSDSTA to research the permanent deformation of CGSF (the maximum particle size is 60 mm) under cyclic loading. The purposes of this study are to (<reflink idref="bib1" id="ref13">1</reflink>) study the permanent deformation of coal gangue used as subgrade filler so as to realize resource utilization, (<reflink idref="bib2" id="ref14">2</reflink>) explore the effect of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>σ</mi><mn>3</mn><mo>′</mo></msubsup></mrow></semantics></math> </ephtml> , <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></semantics></math> </ephtml> , and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mi>c</mi></msub></mrow></semantics></math> </ephtml> on the permanent deformation to further understand the mechanical properties of CGSF, and (<reflink idref="bib3" id="ref15">3</reflink>) establish the unified model of permanent deformation in order to apply this to different types of permanent deformation.</p> <hd id="AN0163038013-3">2. Laboratory Testing Program</hd> <p></p> <hd id="AN0163038013-4">2.1. Tested Materials and Apparatus</hd> <p>The original tested material of the specimens was crushed coal gangue, which was collected from a coal mine in Xiangtan city. The waste coal gangue in this mine is shown in Figure 1. Nearly 15 tons of coal gangue were transported to the laboratory for indoor tests and research. The original particle size of coal gangue not only contains fine particles less than 0.075 mm, but also includes stones of tens of centimeters. It should be noted that the maximum particle size allowed by the test equipment in this test does not exceed 60 mm. Considering that the specimens in this test were prepared manually, CGSF with particle sizes greater than 60 mm were removed. The color of coal gangue particles is black and black-gray, and the coal gangue has not experienced spontaneous combustion. Coal gangue particles are angular, sharp, and hard with a rough surface and an irregular shape. The CGSF was dried to constant weight in an oven at 105–110 °C (more than 24 h), and then the standard sieve tests with aperture sizes of 60, 40, 20, 10, 5, 2, 0.5, and 0.075 mm were carried out. Coal gangue particles of each group after sieving tests were displayed in Figure 2. According to the JTG 3430-2020 Chinese standard for soil test method [[<reflink idref="bib18" id="ref16">18</reflink>]], the natural moisture content of CGSF is 2.20–2.98%, the liquid limit, the plastic limit, and the plasticity index of fine particles are 31.46%, 20.57%, and 10.89%, respectively. The coal gangue of this coal mine mainly includes sandstone, limestone, shale, and mudstone.</p> <p>An LSDSTA manufactured by Chengdu Donghua Zhuoyue Technology Co., Ltd. (Chengdu, China), was used in this test, which is shown in Figure 3. The specimen sizes allowed by the LSDSTA are <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>D</mi></semantics></math> </ephtml> = 300 mm and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>H</mi></semantics></math> </ephtml> = 600 mm. The ratio between the triaxial specimen diameter and the maximum particle size should not be smaller than 5 [[<reflink idref="bib19" id="ref17">19</reflink>], [<reflink idref="bib21" id="ref18">21</reflink>]]; therefore, the maximum particle size allowed by LSDSTA in this test is no greater than 60 mm, and then the effect of specimen size can be neglected. The LSDSTA mainly includes the following parts: (<reflink idref="bib1" id="ref19">1</reflink>) a data acquisition system through a computer, (<reflink idref="bib2" id="ref20">2</reflink>) a testing machine control system, (<reflink idref="bib3" id="ref21">3</reflink>) a triaxial pressure cover, (<reflink idref="bib4" id="ref22">4</reflink>) an axial loading system, (<reflink idref="bib5" id="ref23">5</reflink>) a volumetric strain measurement system, and (<reflink idref="bib6" id="ref24">6</reflink>) a sample preparation mold, which are shown in Figure 3. The LSDSTA can automatically collect test parameters, such as axial load and displacement, confining pressure, pore pressure, and volumetric strain, as well as realize the static shear test and cyclic dynamic loading test. In addition, the large-scale triaxial tests and the same specimen size were widely used in the previous studies, e.g., Cai et al. [[<reflink idref="bib20" id="ref25">20</reflink>]] and Leng et al. [[<reflink idref="bib21" id="ref26">21</reflink>]], which guarantees the reliability of this apparatus.</p> <hd id="AN0163038013-5">2.2. Specimen Preparation and Testing Program</hd> <p>The only way to characterize the grading of granular materials is to use the grading curve. The grading curve contains a large amount of data; however, it lacks quantitative indicators. Hence, it is difficult to make the comparison of the particle size distribution with different gradings of granular materials. In order to completely express the grading of particles and quantitatively analyze the relationship between grading and relevant mechanical indexes, the grading of granular materials is quantified by establishing the grading equations with mathematical formulas, which has great significance for engineering practice and academic research. In this test, the method of artificial sample preparation according to FMGE was used, and the FMGE is defined as [[<reflink idref="bib22" id="ref27">22</reflink>], [<reflink idref="bib24" id="ref28">24</reflink>]]</p> <p>(<reflink idref="bib1" id="ref29">1</reflink>) <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>P</mi><mi>i</mi></msub><mo>=</mo><msup><mrow><mrow><mfrac><mrow><msub><mi>d</mi><mi>i</mi></msub></mrow><mrow><msub><mi>d</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></mfrac></mrow></mrow><mrow><mn>3</mn><mo>−</mo><msub><mi>D</mi><mi>f</mi></msub></mrow></msup><mo>×</mo><mn>100</mn><mo>%</mo></mrow></semantics></math> </ephtml></p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></semantics></math> </ephtml> represents the fractal dimension, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>d</mi><mi>i</mi></msub></mrow></semantics></math> </ephtml> presents the particle size (mm), <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>P</mi><mi>i</mi></msub></mrow></semantics></math> </ephtml> denotes the cumulative mass percentage with particle size less than <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>d</mi><mi>i</mi></msub></mrow></semantics></math> </ephtml> (%), and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>d</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math> </ephtml> indicates the maximum particle size (mm).</p> <p>The control parameters of well grading for CGSF are the coefficient of uniformity ( <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>C</mi><mi>U</mi></msub></mrow></semantics></math> </ephtml> ) and the coefficient of curvature ( <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>C</mi><mi>C</mi></msub></mrow></semantics></math> </ephtml> ), and the calculation formulas are as follows [[<reflink idref="bib25" id="ref30">25</reflink>]]:</p> <p>(<reflink idref="bib2" id="ref31">2</reflink>) <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>C</mi><mi>u</mi></msub><mo>=</mo><mfrac><mrow><msub><mi>d</mi><mrow><mn>60</mn></mrow></msub></mrow><mrow><msub><mi>d</mi><mrow><mn>10</mn></mrow></msub></mrow></mfrac></mrow></semantics></math> </ephtml></p> <p>(<reflink idref="bib3" id="ref32">3</reflink>) <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>C</mi><mi>c</mi></msub><mo>=</mo><mfrac><mrow><msup><mrow><mrow><msub><mi>d</mi><mrow><mn>30</mn></mrow></msub></mrow></mrow><mn>2</mn></msup></mrow><mrow><msub><mi>d</mi><mrow><mn>10</mn></mrow></msub><msub><mi>d</mi><mrow><mn>60</mn></mrow></msub></mrow></mfrac></mrow></semantics></math> </ephtml></p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>d</mi><mrow><mn>60</mn></mrow></msub></mrow></semantics></math> </ephtml> , <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>d</mi><mrow><mn>30</mn></mrow></msub></mrow></semantics></math> </ephtml> , and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>d</mi><mrow><mn>10</mn></mrow></msub></mrow></semantics></math> </ephtml> refer to the particle size corresponding to the passing percentage of 60%, 30%, and 10% in the grading curve, respectively (mm).</p> <p>CGSF with well grading satisfies <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>C</mi><mi>u</mi></msub><mo>≥</mo><mn>5</mn></mrow></semantics></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1</mn><mo>≤</mo><msub><mi>C</mi><mi>c</mi></msub><mo>≤</mo><mn>3</mn></mrow></semantics></math> </ephtml> . Furthermore, combining Equations (<reflink idref="bib1" id="ref33">1</reflink>)–(<reflink idref="bib3" id="ref34">3</reflink>), the range of well grading can be captured based on the FMGE:</p> <p>(<reflink idref="bib4" id="ref35">4</reflink>) <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>1.89</mn><mo>=</mo><mn>3</mn><mo>−</mo><mfrac><mrow><mi>lg</mi><mn>6</mn></mrow><mrow><mi>lg</mi><mn>5</mn></mrow></mfrac><mo>≤</mo><msub><mi>D</mi><mi>f</mi></msub><mo>≤</mo><mn>3</mn><mo>−</mo><mfrac><mrow><mi>lg</mi><mrow><mfrac><mn>3</mn><mn>2</mn></mfrac></mrow></mrow><mrow><mi>lg</mi><mn>3</mn></mrow></mfrac><mo>=</mo><mn>2.63</mn></mrow></semantics></math> </ephtml></p> <p>According to Equation (<reflink idref="bib4" id="ref36">4</reflink>), 4 groups of tests with different fractal dimensions, i.e., <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></semantics></math> </ephtml> = 1.89, 2.13, 2.37, and 2.61, were designed to carry out the experimental research, and the test design grading curve is shown in Figure 4. A cylindrical specimen with <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>D</mi></semantics></math> </ephtml> = 300 mm and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>H</mi></semantics></math> </ephtml> = 600 mm was utilized in this test; <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>D</mi></semantics></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>H</mi></semantics></math> </ephtml> are the diameter and height of the specimen, respectively. According to the Chinese Standard of Soils for Highway Engineering [[<reflink idref="bib18" id="ref37">18</reflink>]], the maximum dry density of the specimen can be obtained. Compaction degree, which was widely used for the triaxial test and situ construction [[<reflink idref="bib27" id="ref38">27</reflink>]], is calculated as follows:</p> <p>(<reflink idref="bib5" id="ref39">5</reflink>) <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mi>c</mi></msub><mo>=</mo><mfrac><mi>ρ</mi><mrow><msub><mi>ρ</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></mfrac><mo>×</mo><mn>100</mn></mrow></semantics></math> </ephtml></p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>ρ</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub></mrow></semantics></math> </ephtml> denotes the maximum dry density ( <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">g</mi><mo>/</mo><msup><mrow><mi>cm</mi></mrow><mn>3</mn></msup></mrow></semantics></math> </ephtml> ), <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ρ</mi></semantics></math> </ephtml> is the dry density of the specimen ( <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi mathvariant="normal">g</mi><mo>/</mo><msup><mrow><mi>cm</mi></mrow><mn>3</mn></msup></mrow></semantics></math> </ephtml> ), and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mi>c</mi></msub></mrow></semantics></math> </ephtml> represents the compaction degree (%).</p> <p>In this test, the compaction degree was used to control the preparation of specimens and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mi>c</mi></msub><mo>=</mo></mrow></semantics></math> </ephtml> 90%, 93%, and 96% were adopted. In addition, the compaction degree meets the requirements of the road base and subbase materials [[<reflink idref="bib18" id="ref40">18</reflink>]].</p> <p>Figure 5 shows the process of the large triaxial tests. First, the above drying CGSF (as displayed in Figure 2) should be well mixed according to the designed grading curve (as shown in Figure 4). The specimen prepared in this test was too large and heavy at the laboratory. Therefore, the specimen was compacted with a compaction hammer in a mold in five layers (as shown in Figure 5a). Before placing CGSF on the next layer, the surface of the previously compacted layer was scraped to a depth of about 20 mm to guarantee well-interlocking vertically adjacent layers, just as in other studies [[<reflink idref="bib20" id="ref41">20</reflink>], [<reflink idref="bib29" id="ref42">29</reflink>]]. The target compaction degree of the CGSF specimen was reached by controlling the thickness of each individual layer and the mass of added CGSF. After compaction, a rubber membrane was used to enclose the specimen, and the top and bottom of the specimen were tied with rubber ropes. Figure 5b displays the prepared sample.</p> <p>Then, the specimen was put in the triaxial pressure cover. All of the specimens were saturated by back pressure before loading, as described by Kong et al. [[<reflink idref="bib31" id="ref43">31</reflink>]], Cai et al. [[<reflink idref="bib20" id="ref44">20</reflink>]], Chen et al. [[<reflink idref="bib32" id="ref45">32</reflink>]], and Wu et al. [[<reflink idref="bib33" id="ref46">33</reflink>]]. The specimens were considered completely saturated when the pore pressure coefficient <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>B</mi></semantics></math> </ephtml> was larger than 0.95. After that, the required effective confining pressure was applied to the specimen to complete the isotropic consolidation.</p> <p>The research shows that traffic loading is different from the sine wave, but very similar to the half-sine wave [[<reflink idref="bib34" id="ref47">34</reflink>]]. Therefore, the half-sine wave was used to simulate the traffic cyclic dynamic loading. The dynamic loading frequency was chosen as 1 Hz in these tests, which was also used in [[<reflink idref="bib21" id="ref48">21</reflink>], [<reflink idref="bib34" id="ref49">34</reflink>]]. This paper mainly focuses on the permanent deformation of CGSF, and the confining pressures (i.e., effective consolidation stress), <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>σ</mi><mn>3</mn><mo>'</mo></msubsup></mrow></semantics></math> </ephtml> , of 50, 100, and 150 <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>kPa</mi></mrow></semantics></math> </ephtml> were selected in this test. The cyclic dynamic loading in railway subgrade is generally distributed between 35 kPa and 185 kPa [[<reflink idref="bib35" id="ref50">35</reflink>]]. Therefore, the axial dynamic stress amplitude was taken as 180 kPa in the separate loading test of each sample, and each specimen was loaded with 30,000 numbers of half-sine wave separately in this test. In addition, Wang et al. [[<reflink idref="bib37" id="ref51">37</reflink>]] studied the permanent deformation of reinforced gravelly soil filler under cyclic loading with dynamic stress amplitudes of 90 kPa and 135 kPa.</p> <p>The test scheme design is shown in Table 1. The large-scale triaxial test can investigate the mechanical properties with large-size particles, which is closer to the engineering practice. Hence, the large-scale triaxial test has been widely used in recent years. Three groups of parallel tests were carried out at the same time under each test condition, and one group was randomly selected for key analysis. The loading process in this test is shown in Figure 6.</p> <hd id="AN0163038013-6">3. Permanent Deformation Analysis</hd> <p>The monitoring data show that the permanent deformation of the subgrade under the traffic cyclic loading is very considerable and even has an obvious impact on the normal operation of the project [[<reflink idref="bib36" id="ref52">36</reflink>]]. Therefore, accurate analysis and prediction of the permanent deformation for the subgrade have important theoretical and practical significance for the normal use and safe operation of the completed project and for the guidance of future project construction.</p> <p>According to the theory of elastoplastic mechanics [[<reflink idref="bib35" id="ref53">35</reflink>]], the axial strain of a coal gangue sample under cyclic loading includes elastic strain <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>ε</mi><mi>e</mi></msup></mrow></semantics></math> </ephtml> and plastic strain <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>ε</mi><mi>p</mi></msup></mrow></semantics></math> </ephtml> , namely:</p> <p>(<reflink idref="bib6" id="ref54">6</reflink>) <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>ε</mi><mn>1</mn></msub><mo>=</mo><msup><mi>ε</mi><mi>e</mi></msup><mo>+</mo><msup><mi>ε</mi><mi>p</mi></msup></mrow></semantics></math> </ephtml></p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>ε</mi><mn>1</mn></msub></mrow></semantics></math> </ephtml> represents the axial strain of the specimen; <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>ε</mi><mi>e</mi></msup></mrow></semantics></math> </ephtml> denotes the elastic strain; and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>ε</mi><mi>p</mi></msup></mrow></semantics></math> </ephtml> indicates plastic strain.</p> <p>The elastic strain will recover during the loading and unloading process, while the plastic strain cannot recover and will gradually accumulate, resulting in the failure of the sample. Therefore, the cumulative plastic strain causes permanent deformation, and the permanent deformation ( <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> ) studied in this paper is the cumulative plastic strain under cyclic loading. The calculation diagram is shown in Figure 7.</p> <hd id="AN0163038013-7">3.1. Effect of Confining Pressure on the Permanent Deformation</hd> <p>According to the above test scheme, the relationship between the permanent deformation ( <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> ) and the numbers of cyclic loading (<emph>N</emph>) with different confining pressures is shown in Figure 8. The following can be seen from Figure 8: (<reflink idref="bib1" id="ref55">1</reflink>) The relationship curve between <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> and <emph>N</emph> can be divided into three stages. The first stage is the rapid growth phase, and the curve has approximately linear growth. The second stage is the deceleration growth phase; the curve growth rate slows down obviously, and the curve gradient decreases gradually. The third stage is the approaching stability phase, and the permanent deformation closes to stable. (<reflink idref="bib2" id="ref56">2</reflink>) As observed in Figure 8, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> decreases by 2.79% when the confining pressure increases from 50 kPa to 100 kPa, whereas <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> decreases by only 0.30% when the confining pressure increases from 100 kPa to 200 kPa. Hence, the effect of confining pressure on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> is related to the level of confining pressure. When the confining pressure is smaller, its effect on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> is significant, whereas when the confining pressure is larger, its influence on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> is smaller. This also reflects that the effect of traffic cyclic loading on subgrade decreases with the increase of subgrade depth.</p> <hd id="AN0163038013-8">3.2. Effect of Grading on the Permanent Deformation</hd> <p>The relationship between <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> and <emph>N</emph> with different gradings is displayed in Figure 9. As demonstrated in Figure 9: (<reflink idref="bib1" id="ref57">1</reflink>) <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> increases approximate linear when <emph>N</emph> is less than 400. The growth rate of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> begins to slow down and gradually decreases when <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>400</mn><mo>≤</mo><mi>N</mi><mo>≤</mo><mn>1000</mn></mrow></semantics></math> </ephtml> . <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> tends to be stable when <emph>N</emph> is more than 1000. The abovementioned laws apply to the final stability relationship curve between <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> and <emph>N</emph>. Therefore, <emph>N</emph> = 1000 can be used as a criterion for reaching the stable stage of CGSF, which can guide the later test loading and coal gangue subgrade engineering. (<reflink idref="bib2" id="ref58">2</reflink>) Under the condition of maximum fine particle content ( <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></semantics></math> </ephtml> = 2.61), the coal gangue sample will fail ( <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> reaches 15%) rapidly when <emph>N</emph> is very small (<emph>N</emph> = 535). Moreover, in these four groups of tests, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> of the coal gangue sample is the smallest when <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></semantics></math> </ephtml> = 2.13. Hence, the influence of grading, i.e., particle size distribution, on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> of coal gangue samples is significant. With the increase of the fractal dimension ( <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></semantics></math> </ephtml> ), <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> first decreases and then increases, reflecting that there is an obvious optimal grading for coal gangue samples under cyclic loading. Wu et al. [[<reflink idref="bib26" id="ref59">26</reflink>], [<reflink idref="bib38" id="ref60">38</reflink>]] studied the compaction characteristics of coarse aggregates for embankment dams using the surface vibration compaction test and lateral compression test, which showed that there is an optimal grading of coarse aggregate. In addition, through the large-scale vibration compaction test and static shear test, the authors of [[<reflink idref="bib39" id="ref61">39</reflink>]] also investigated the influence of grading on the compaction and strength of CGSF, and then the optimal grading, i.e., <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mn>2.04</mn><mo>≤</mo><msub><mi>D</mi><mi>f</mi></msub><mo>≤</mo><mn>2.55</mn></mrow></semantics></math> </ephtml> , was captured using FMGE. The reason for this phenomenon is related to the contact relationship and interlocking relationship between coarse and fine particles. These conclusions are all consistent with this study.</p> <hd id="AN0163038013-9">3.3. Effect of Compaction Degree on the Permanent Deformation</hd> <p>The evolution of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> versus <emph>N</emph> with different compaction degree values is displayed in Figure 10. As demonstrated in Figure 10: (<reflink idref="bib1" id="ref62">1</reflink>) The relationship between <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> and <emph>N</emph> with different compaction degree values is consistent with the variation laws under different confining pressures and grading parameters. (<reflink idref="bib2" id="ref63">2</reflink>) When the compaction degree increases from 90% to 93%, the development of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> is hardly affected. However, when the compaction degree increases from 93% to 96%, increasing compaction degree has a significant effect on restraining <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> . Therefore, the effect of compaction degree on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> of CGSF depends on the level of compaction degree. <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> is hardly affected when the compaction degree is smaller, whereas increasing the compaction degree has a significant effect on restraining <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> when the compaction degree is bigger.</p> <hd id="AN0163038013-10">4. Unified Model of Permanent Deformation</hd> <p></p> <hd id="AN0163038013-11">4.1. Comparative Analysis of Existing Models</hd> <p>The establishment of a permanent deformation model has always been the focus of many scholars. The most widely used model was proposed by Monismith et al. [[<reflink idref="bib40" id="ref64">40</reflink>]], which was defined as:</p> <p>(<reflink idref="bib7" id="ref65">7</reflink>) <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ε</mi><mo>=</mo><msub><mi>α</mi><mn>1</mn></msub><msup><mi>N</mi><mrow><msub><mi>β</mi><mn>1</mn></msub></mrow></msup></mrow></semantics></math> </ephtml></p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> indicates the permanent deformation, <emph>N</emph> represents the numbers of cyclic loading, and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>α</mi><mn>1</mn></msub></mrow></semantics></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>β</mi><mn>1</mn></msub></mrow></semantics></math> </ephtml> are the fitting parameters of this model.</p> <p>The permanent deformation model proposed by Li et al. [[<reflink idref="bib35" id="ref66">35</reflink>]] was defined as:</p> <p>(<reflink idref="bib8" id="ref67">8</reflink>) <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ε</mi><mo>=</mo><msub><mi>α</mi><mn>2</mn></msub><mrow><mn>1</mn><mo>−</mo><msup><mi>e</mi><mrow><mo>−</mo><msub><mi>β</mi><mn>2</mn></msub><mi>N</mi></mrow></msup></mrow></mrow></semantics></math> </ephtml></p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>α</mi><mn>2</mn></msub></mrow></semantics></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>β</mi><mn>2</mn></msub></mrow></semantics></math> </ephtml> are the fitting parameters.</p> <p>Liu et al. [[<reflink idref="bib41" id="ref68">41</reflink>]] proposed the following permanent deformation model:</p> <p>(<reflink idref="bib9" id="ref69">9</reflink>) <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ε</mi><mo>=</mo><msub><mi>α</mi><mn>3</mn></msub><mo>+</mo><msub><mi>β</mi><mn>3</mn></msub><mi>ln</mi><mi>N</mi></mrow></semantics></math> </ephtml></p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>α</mi><mn>3</mn></msub></mrow></semantics></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>β</mi><mn>3</mn></msub></mrow></semantics></math> </ephtml> are the fitting parameters.</p> <p>Wang et al. [[<reflink idref="bib37" id="ref70">37</reflink>]] proposed the permanent deformation model as follows:</p> <p>(<reflink idref="bib10" id="ref71">10</reflink>) <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ε</mi><mo>=</mo><mfrac><mi>N</mi><mrow><msub><mi>α</mi><mn>4</mn></msub><mo>+</mo><msub><mi>β</mi><mn>4</mn></msub><mi>N</mi><mo>+</mo><msub><mi>γ</mi><mn>4</mn></msub><msup><mi>N</mi><mrow><mn>0.5</mn></mrow></msup></mrow></mfrac></mrow></semantics></math> </ephtml></p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>α</mi><mn>4</mn></msub></mrow></semantics></math> </ephtml> , <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>β</mi><mn>4</mn></msub></mrow></semantics></math> </ephtml> , and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>γ</mi><mn>4</mn></msub></mrow></semantics></math> </ephtml> are the fitting parameters.</p> <p>According to the relationship between <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> and <emph>N</emph> presented in Figure 8, Figure 9 and Figure 10, the permanent deformation of CGSF under cyclic loading is analyzed using a data-fitting method based on the above models in Equations (<reflink idref="bib7" id="ref72">7</reflink>)–(<reflink idref="bib10" id="ref73">10</reflink>). Analysis shows that fitting parameters of CGSF in Equation (<reflink idref="bib10" id="ref74">10</reflink>) cannot be obtained. Hence, Equation (<reflink idref="bib10" id="ref75">10</reflink>) is not investigated in this paper. The fitting parameters are displayed in Table 2.</p> <p>According to the correlation coefficient ( <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></semantics></math> </ephtml> ) of fitting parameters in Table 2, the existing permanent deformation model cannot accurately enough describe the permanent deformation of CGSF under cyclic loading, and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></semantics></math> </ephtml> values are all less than 0.9. The permanent deformation curve can be divided into three types [[<reflink idref="bib42" id="ref76">42</reflink>]]: (<reflink idref="bib1" id="ref77">1</reflink>) Stable/attenuation type, where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> first increases with the increase of <emph>N</emph> and then tends to stay at a stable value when <emph>N</emph> achieves a larger value. (<reflink idref="bib2" id="ref78">2</reflink>) Failure type, where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> will increase sharply until the specimen fails when <emph>N</emph> reaches a bigger value. (<reflink idref="bib3" id="ref79">3</reflink>) Criticality type, where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> distributes between (<reflink idref="bib1" id="ref80">1</reflink>) and (<reflink idref="bib2" id="ref81">2</reflink>). The existing permanent deformation model can describe the variation of one certain type of the mentioned curves well; however, there is a lack of a unified model of permanent deformation used for different types of permanent deformation curves. Therefore, it is necessary to put forward a unified model which can be generally applicable to different types of permanent deformation based on the mentioned CGSF tests.</p> <hd id="AN0163038013-12">4.2. Establishment of Unified Model for Permanent Deformation</hd> <p>Based on the above analysis of the permanent deformation curve for CGSF and the comparative analysis of existing models, the relationship between <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> and <emph>N</emph> is analyzed using regression using MATLAB, and then the unified calculation model of permanent deformation for CGSF under cyclic loading is established:</p> <p>(<reflink idref="bib11" id="ref82">11</reflink>) <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mi>ε</mi><mo>=</mo><mfrac><mrow><mi>p</mi><mi>N</mi></mrow><mrow><mi>q</mi><mo>+</mo><mi>N</mi></mrow></mfrac></mrow></semantics></math> </ephtml></p> <p>where <emph>p</emph> and <emph>q</emph> are the model parameters.</p> <p>The model parameters in Equation (<reflink idref="bib11" id="ref83">11</reflink>) are solved using the least square method, that is:</p> <p>(<reflink idref="bib12" id="ref84">12</reflink>) <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><munderover><mstyle mathsize="140%" displaystyle="true"><mo>∑</mo></mstyle><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msup><mrow><mrow><mi>ε</mi><mo>−</mo><mfrac><mrow><mi>p</mi><mi>N</mi></mrow><mrow><mi>q</mi><mo>+</mo><mi>N</mi></mrow></mfrac></mrow></mrow><mn>2</mn></msup><mo>=</mo><mi>min</mi><mfenced close="}" open="{"><mrow><munderover><mstyle mathsize="140%" displaystyle="true"><mo>∑</mo></mstyle><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><msup><mrow><mrow><mi>ε</mi><mo>−</mo><mfrac><mrow><mi>p</mi><mi>N</mi></mrow><mrow><mi>q</mi><mo>+</mo><mi>N</mi></mrow></mfrac></mrow></mrow><mn>2</mn></msup></mrow></mfenced></mrow></semantics></math> </ephtml></p> <p>The model parameters obtained by Equations (<reflink idref="bib11" id="ref85">11</reflink>) and (<reflink idref="bib12" id="ref86">12</reflink>) are shown in Table 3. Figure 11 presents the comparative analysis of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></semantics></math> </ephtml> for the above permanent deformation models, i.e., Equations (<reflink idref="bib7" id="ref87">7</reflink>)–(<reflink idref="bib9" id="ref88">9</reflink>), and Figure 12 shows the comparison between the proposed model and the test curve. It can be seen from Table 3, Figure 11 and Figure 12, compared with the existing permanent deformation models, that the proposed model in this paper can better describe the permanent deformation of CGSF under cyclic loading. The <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></semantics></math> </ephtml> of the proposed model is bigger than 0.9, which is larger than the other models. The correctness of the model is preliminarily verified.</p> <hd id="AN0163038013-13">4.3. Model Parameter Analysis</hd> <p>Based on the test data of the DT02 specimen, i.e., <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msubsup><mi>σ</mi><mn>3</mn><mo>′</mo></msubsup></mrow></semantics></math> </ephtml> = 100 kPa, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mi>f</mi></msub><mo>=</mo><mn>2.37</mn></mrow></semantics></math> </ephtml> , and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mi>c</mi></msub><mo>=</mo><mn>93</mn><mo>%</mo></mrow></semantics></math> </ephtml> , the physical meaning of the proposed model (Equation (<reflink idref="bib11" id="ref89">11</reflink>)) parameters is analyzed by changing the model parameter values, as shown in Figure 13 (the model parameters of fitting curve in Figure 13 are <emph>p</emph> = 4.8175, <emph>q</emph> = 135.5844).</p> <p>It can be seen from Figure 13 that, when <emph>q</emph> is constant, the <emph>N</emph> required before the permanent deformation curve tends to be stable is basically unchanged with the increase of <emph>p</emph>, whereas the stable value of the permanent deformation curve increases accordingly. Therefore, <emph>p</emph> reflects the permanent deformation in the stable stage. The greater <emph>p</emph> occurs with the bigger permanent deformation. Similarly, when <emph>p</emph> is constant, with the increasing <emph>q</emph>, the permanent deformation at the stable stage remains unchanged, whereas the <emph>N</emph> required before the curve tends to be stable increases. Hence, <emph>q</emph> indicates the <emph>N</emph> required before the permanent deformation curve tends to be stable, and the greater <emph>N</emph> required before the permanent deformation curve reaches the stable stage occurs with a larger <emph>q</emph>.</p> <p>The above analysis studies the physical meaning of the model parameters by changing the parameter values. Then, the correctness of the above model parameter analysis will be further verified from a mathematical point of view.</p> <p>For the unified model of permanent deformation, i.e., Equation (<reflink idref="bib11" id="ref90">11</reflink>), when <emph>N</emph> tends to be 0:</p> <p>(<reflink idref="bib13" id="ref91">13</reflink>) <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mi>lim</mi></mrow><mrow><mi>N</mi><mo>→</mo><mn>0</mn></mrow><mi>ε</mi><mo>=</mo><mrow><mi>lim</mi></mrow><mrow><mi>N</mi><mo>→</mo><mn>0</mn></mrow><mfrac><mrow><mi>p</mi><mi>N</mi></mrow><mrow><mi>q</mi><mo>+</mo><mi>N</mi></mrow></mfrac><mo>=</mo><mn>0</mn></mrow></semantics></math> </ephtml></p> <p>Before test loading, the permanent deformation of the sample is 0, and the model is consistent with the actual situation. When the coal gangue sample experiences a large number of cyclic loadings:</p> <p>(<reflink idref="bib14" id="ref92">14</reflink>) <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><mrow><mi>lim</mi></mrow><mrow><mi>N</mi><mo>→</mo><mo>∞</mo></mrow><mi>ε</mi><mo>=</mo><mrow><mi>lim</mi></mrow><mrow><mi>N</mi><mo>→</mo><mo>∞</mo></mrow><mfrac><mrow><mi>p</mi><mi>N</mi></mrow><mrow><mi>q</mi><mo>+</mo><mi>N</mi></mrow></mfrac><mo>=</mo><mrow><mi>lim</mi></mrow><mrow><mi>N</mi><mo>→</mo><mo>∞</mo></mrow><mfrac><mi>p</mi><mrow><mfrac><mi>q</mi><mi>N</mi></mfrac><mo>+</mo><mn>1</mn></mrow></mfrac><mo>=</mo><mi>p</mi></mrow></semantics></math> </ephtml></p> <p>According to Equation (<reflink idref="bib14" id="ref93">14</reflink>), when <emph>N</emph> is large enough, the denominator approaches 1, and the maximum value of permanent deformation is equal to <emph>p</emph>. Therefore, <emph>p</emph> reflects the permanent deformation in the stable stage. For Equation (<reflink idref="bib14" id="ref94">14</reflink>), the smaller <emph>N</emph> required before the permanent deformation curve reaches the stable stage occurs with the lesser <emph>q</emph>. It can be seen that the analysis of model parameters from the perspective of mathematics and test curve is consistent.</p> <hd id="AN0163038013-14">4.4. Model Validation</hd> <p>The test data of Figure 8a in Li et al. [[<reflink idref="bib35" id="ref95">35</reflink>]], Figure 3 in Wang et al. [[<reflink idref="bib37" id="ref96">37</reflink>]], and Figure 3a in Mei et al. [[<reflink idref="bib43" id="ref97">43</reflink>]] were selected to verify the correctness of the unified model of permanent deformation in this paper. Figure 14a–c display the fitting effect of the test data in the above research and the permanent deformation model established in this paper. It can be seen from Figure 14 that the permanent deformation model established in this paper can describe the permanent deformation test results in the existing research well, thus verifying the correctness of this model. In addition, three types of the permanent deformation curve in Figure 14 can be described well by the unified model of permanent deformation in this study, which shows the universal applicability of the model in this paper.</p> <hd id="AN0163038013-15">5. Conclusions</hd> <p>The following conclusions can be drawn from the investigation described above.</p> <p></p> <ulist> <item> (<reflink idref="bib1" id="ref98">1</reflink>) Experimental grading was designed by using FMGE, and the well-grading limits of CGSF were captured based on the FMGE, i.e., the grading is uniform when 1.89 ≤ <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></semantics></math> </ephtml> ≤ 2.63.</item> <p></p> <item> (<reflink idref="bib2" id="ref99">2</reflink>) The relationship curve between <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> and <emph>N</emph> can be divided into three stages, i.e., the rapid growth phase, the deceleration growth phase, and the approaching stability phase. <emph>N</emph> = 1000 can be used as a criterion for reaching the stable stage of CGSF, which can guide the later test loading and coal gangue subgrade engineering.</item> <p></p> <item> (<reflink idref="bib3" id="ref100">3</reflink>) The effect of confining pressure on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> is related to the level of confining pressure. The effect of confining pressure on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> is significant when the confining pressure is smaller, whereas the influence of confining pressure on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> is smaller when the confining pressure is larger.</item> <p></p> <item> (<reflink idref="bib4" id="ref101">4</reflink>) The influence of grading on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> of coal gangue samples is significant. With the increase of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mrow><msub><mi>D</mi><mi>f</mi></msub></mrow></semantics></math> </ephtml> , <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> first increases and then decreases, reflecting that there is an obvious optimal grading for coal gangue samples under cyclic loading.</item> <p></p> <item> (<reflink idref="bib5" id="ref102">5</reflink>) The effect of compaction degree on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> of CGSF depends on the level of compaction degree. <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> is hardly affected when the compaction degree is smaller, whereas increasing compaction degree has a significant effect on restraining <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><semantics><mi>ε</mi></semantics></math> </ephtml> when the compaction degree is bigger.</item> <p></p> <item> (<reflink idref="bib6" id="ref103">6</reflink>) According to the analysis of the permanent deformation curve for CGSF, the unified calculation model of permanent deformation for CGSF under cyclic loading was established. Compared with the existing permanent deformation models, the proposed model in this paper can better describe the permanent deformation of CGSF under cyclic loading. Then, the model parameters were analyzed and the model was verified.</item> </ulist> <hd id="AN0163038013-16">Figures and Tables</hd> <p>Graph: Figure 1 The waste coal gangue of a coal mine.</p> <p>Graph: Figure 2 Coal gangue particles after sieving tests.</p> <p>Graph: Figure 3 The large-scale dynamic and static triaxial instrument.</p> <p>Graph: Figure 4 Particle size distribution of the tested materials.</p> <p>Graph: Figure 5 The process of the large triaxial tests: (a) compacting in the mold; (b) the prepared sample; (c) failed sample after the test.</p> <p>Graph: Figure 6 Loading process under cyclic loading.</p> <p>DIAGRAM: Figure 7 Schematic diagram of the permanent deformation calculation.</p> <p>Graph: Figure 8 The relationship between ε and N with different confining pressure values.</p> <p>Graph: Figure 9 Relationship between ε and N with different grading parameters.</p> <p>Graph: Figure 10 Evolution of ε versus N with different compaction degree values.</p> <p>Graph: Figure 11 Correlation coefficient comparison of permanent deformation models [[<reflink idref="bib35" id="ref104">35</reflink>], [<reflink idref="bib40" id="ref105">40</reflink>]].</p> <p>Graph: Figure 12 Comparison between the proposed model and the test curve: (a) under different confining pressure conditions, (b) under diverse compaction degree conditions, and (c) under various grading conditions.</p> <p>Graph: Figure 13 Model parameters analysis.</p> <p>Graph: Figure 14 Model validation. Test data were extracted from: (a) Li et al. [[<reflink idref="bib35" id="ref106">35</reflink>]], (b) Wang et al. [[<reflink idref="bib37" id="ref107">37</reflink>]], and (c) Mei et al. [[<reflink idref="bib43" id="ref108">43</reflink>]].</p> <p>Table 1 Test scheme design.</p> <p> <ephtml> <table><thead><tr><th align="center" style="border-top:solid thin;border-bottom:solid thin">Specimen Number</th><th align="center" style="border-top:solid thin;border-bottom:solid thin"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mstyle mathvariant="bold"><mrow><msub><mi mathvariant="bold-italic">D</mi><mi mathvariant="bold-italic">f</mi></msub></mrow></mstyle></semantics></math></p></th><th align="center" style="border-top:solid thin;border-bottom:solid thin"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mstyle mathvariant="bold"><mrow><msubsup><mi mathvariant="bold-italic">σ</mi><mn>3</mn><mo>'</mo></msubsup></mrow></mstyle></semantics></math></p><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mstyle mathvariant="bold"><mrow><mtext> </mtext><mo>(</mo><mstyle mathvariant="bold" mathsize="normal"><mi mathvariant="bold">kPa</mi></mstyle><mo>)</mo></mrow></mstyle></semantics></math></p></th><th align="center" style="border-top:solid thin;border-bottom:solid thin"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mstyle mathvariant="bold"><mrow><msub><mi mathvariant="bold-italic">D</mi><mi mathvariant="bold-italic">c</mi></msub></mrow></mstyle></semantics></math></p> (%) </th></tr></thead><tbody><tr><td align="center" valign="middle">DT01</td><td align="center" valign="middle">2.37</td><td align="center" valign="middle">50</td><td align="center" valign="middle">93</td></tr><tr><td align="center" valign="middle">DT02</td><td align="center" valign="middle">2.37</td><td align="center" valign="middle">100</td><td align="center" valign="middle">93</td></tr><tr><td align="center" valign="middle">DT03</td><td align="center" valign="middle">2.37</td><td align="center" valign="middle">150</td><td align="center" valign="middle">93</td></tr><tr><td align="center" valign="middle">DT04</td><td align="center" valign="middle">2.37</td><td align="center" valign="middle">50</td><td align="center" valign="middle">90</td></tr><tr><td align="center" valign="middle">DT05</td><td align="center" valign="middle">2.37</td><td align="center" valign="middle">50</td><td align="center" valign="middle">96</td></tr><tr><td align="center" valign="middle">DT06</td><td align="center" valign="middle">2.61</td><td align="center" valign="middle">50</td><td align="center" valign="middle">93</td></tr><tr><td align="center" valign="middle">DT07</td><td align="center" valign="middle">2.13</td><td align="center" valign="middle">50</td><td align="center" valign="middle">93</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin">DT08</td><td align="center" valign="middle" style="border-bottom:solid thin">1.89</td><td align="center" valign="middle" style="border-bottom:solid thin">50</td><td align="center" valign="middle" style="border-bottom:solid thin">93</td></tr></tbody></table> </ephtml> </p> <p>Table 2 Model parameters.</p> <p> <ephtml> <table><thead><tr><th align="center" style="border-top:solid thin;border-bottom:solid thin">Specimen Number</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT01</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT02</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT03</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT04</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT05</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT06</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT07</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT08</th></tr></thead><tbody><tr><td align="center" valign="middle"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mrow><msub><mi>α</mi><mn>1</mn></msub></mrow></semantics></math></p></td><td align="center" valign="middle">3.9085</td><td align="center" valign="middle">2.8126</td><td align="center" valign="middle">3.2501</td><td align="center" valign="middle">4.9523</td><td align="center" valign="middle">1.6604</td><td align="center" valign="middle">12.1707</td><td align="center" valign="middle">2.5312</td><td align="center" valign="middle">3.7737</td></tr><tr><td align="center" valign="middle"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mrow><msub><mi>β</mi><mn>1</mn></msub></mrow></semantics></math></p></td><td align="center" valign="middle">0.0667</td><td align="center" valign="middle">0.0550</td><td align="center" valign="middle">0.0345</td><td align="center" valign="middle">0.0432</td><td align="center" valign="middle">0.0693</td><td align="center" valign="middle">0.0323</td><td align="center" valign="middle">0.0635</td><td align="center" valign="middle">0.0482</td></tr><tr><td align="center" valign="middle"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></semantics></math></p></td><td align="center" valign="middle">0.8159</td><td align="center" valign="middle">0.7709</td><td align="center" valign="middle">0.7050</td><td align="center" valign="middle">0.7170</td><td align="center" valign="middle">0.8585</td><td align="center" valign="middle">0.3876</td><td align="center" valign="middle">0.8570</td><td align="center" valign="middle">0.7742</td></tr><tr><td align="center" valign="middle"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mrow><msub><mi>α</mi><mn>2</mn></msub></mrow></semantics></math></p></td><td align="center" valign="middle">7.3600</td><td align="center" valign="middle">4.7367</td><td align="center" valign="middle">4.4983</td><td align="center" valign="middle">7.4476</td><td align="center" valign="middle">3.2039</td><td align="center" valign="middle">16.5600</td><td align="center" valign="middle">4.6217</td><td align="center" valign="middle">5.9533</td></tr><tr><td align="center" valign="middle"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mrow><msub><mi>β</mi><mn>2</mn></msub></mrow></semantics></math></p></td><td align="center" valign="middle">0.0033</td><td align="center" valign="middle">0.0041</td><td align="center" valign="middle">0.0102</td><td align="center" valign="middle">0.0062</td><td align="center" valign="middle">0.0031</td><td align="center" valign="middle">0.0051</td><td align="center" valign="middle">0.0033</td><td align="center" valign="middle">0.0047</td></tr><tr><td align="center" valign="middle"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></semantics></math></p></td><td align="center" valign="middle">0.6947</td><td align="center" valign="middle">0.7091</td><td align="center" valign="middle">0.5936</td><td align="center" valign="middle">0.7042</td><td align="center" valign="middle">0.6320</td><td align="center" valign="middle">0.8911</td><td align="center" valign="middle">0.6038</td><td align="center" valign="middle">0.6182</td></tr><tr><td align="center" valign="middle"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mrow><msub><mi>α</mi><mn>3</mn></msub></mrow></semantics></math></p></td><td align="center" valign="middle">2.8128</td><td align="center" valign="middle">2.2945</td><td align="center" valign="middle">3.0339</td><td align="center" valign="middle">4.4157</td><td align="center" valign="middle">1.1584</td><td align="center" valign="middle">11.2994</td><td align="center" valign="middle">1.9108</td><td align="center" valign="middle">3.2612</td></tr><tr><td align="center" valign="middle"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mrow><msub><mi>β</mi><mn>3</mn></msub></mrow></semantics></math></p></td><td align="center" valign="middle">0.4808</td><td align="center" valign="middle">0.2584</td><td align="center" valign="middle">0.1558</td><td align="center" valign="middle">0.3216</td><td align="center" valign="middle">0.2163</td><td align="center" valign="middle">0.5537</td><td align="center" valign="middle">0.2866</td><td align="center" valign="middle">0.2850</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></semantics></math></p></td><td align="center" valign="middle" style="border-bottom:solid thin">0.8560</td><td align="center" valign="middle" style="border-bottom:solid thin">0.8095</td><td align="center" valign="middle" style="border-bottom:solid thin">0.7321</td><td align="center" valign="middle" style="border-bottom:solid thin">0.7494</td><td align="center" valign="middle" style="border-bottom:solid thin">0.8980</td><td align="center" valign="middle" style="border-bottom:solid thin">0.4149</td><td align="center" valign="middle" style="border-bottom:solid thin">0.8937</td><td align="center" valign="middle" style="border-bottom:solid thin">0.8091</td></tr></tbody></table> </ephtml> </p> <p>Table 3 Parameters of the proposed model.</p> <p> <ephtml> <table><thead><tr><th align="center" style="border-top:solid thin;border-bottom:solid thin">Specimen Number</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT01</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT02</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT03</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT04</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT05</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT06</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT07</th><th align="center" style="border-top:solid thin;border-bottom:solid thin">DT08</th></tr></thead><tbody><tr><td align="center" valign="middle"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mi>p</mi></semantics></math></p></td><td align="center" valign="middle">7.5179</td><td align="center" valign="middle">4.8175</td><td align="center" valign="middle">4.5371</td><td align="center" valign="middle">7.5381</td><td align="center" valign="middle">3.2774</td><td align="center" valign="middle">16.7341</td><td align="center" valign="middle">4.7171</td><td align="center" valign="middle">6.0390</td></tr><tr><td align="center" valign="middle"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mi>q</mi></semantics></math></p></td><td align="center" valign="middle">178.5503</td><td align="center" valign="middle">135.5844</td><td align="center" valign="middle">55.5003</td><td align="center" valign="middle">87.8797</td><td align="center" valign="middle">193.5777</td><td align="center" valign="middle">84.8601</td><td align="center" valign="middle">172.0490</td><td align="center" valign="middle">111.6893</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><semantics xmlns=""><mrow><msup><mi>R</mi><mn>2</mn></msup></mrow></semantics></math></p></td><td align="center" valign="middle" style="border-bottom:solid thin">0.9165</td><td align="center" valign="middle" style="border-bottom:solid thin">0.9391</td><td align="center" valign="middle" style="border-bottom:solid thin">0.9031</td><td align="center" valign="middle" style="border-bottom:solid thin">0.9279</td><td align="center" valign="middle" style="border-bottom:solid thin">0.9104</td><td align="center" valign="middle" style="border-bottom:solid thin">0.9675</td><td align="center" valign="middle" style="border-bottom:solid thin">0.9034</td><td align="center" valign="middle" style="border-bottom:solid thin">0.9152</td></tr></tbody></table> </ephtml> </p> <hd id="AN0163038013-17">Author Contributions</hd> <p>Investigation, Z.-T.Z., Y.-H.W., W.-H.G., W.H. and S.-K.L. All authors have read and agreed to the published version of the manuscript.</p> <hd id="AN0163038013-18">Data Availability Statement</hd> <p>Not applicable.</p> <hd id="AN0163038013-19">Conflicts of Interest</hd> <p>The authors declare no conflict of interest.</p> <ref id="AN0163038013-20"> <title> Footnotes </title> <blist> <bibl id="bib1" idref="ref1" type="bt">1</bibl> <bibtext> Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.</bibtext> </blist> </ref> <ref id="AN0163038013-21"> <title> References </title> <blist> <bibtext> Zhang Y., Ling T.-C. Reactivity activation of waste coal gangue and its impact on the properties of cement-based materials—A review. Constr. Build. Mater. 2020; 234: 117424. 10.1016/j.conbuildmat.2019.117424</bibtext> </blist> <blist> <bibl id="bib2" idref="ref14" type="bt">2</bibl> <bibtext> Zhao Y., Qiu J., Ma Z., Sun X. Eco-friendly treatment of coal gangue for its utilization as supplementary cementitious materials. J. Clean. Prod. 2021; 285: 124834. 10.1016/j.jclepro.2020.124834</bibtext> </blist> <blist> <bibl id="bib3" idref="ref2" type="bt">3</bibl> <bibtext> Li J., Huang Y., Ouyang S., Guo Y., Gao H., Wu L., Shi Y., Zhu L. Transparent characterization and quantitative analysis of broken gangue's 3D fabric under the bearing compression. Int. J. Min. Sci. Technol. 2022; 32: 335-345. 10.1016/j.ijmst.2021.11.013</bibtext> </blist> <blist> <bibl id="bib4" idref="ref3" type="bt">4</bibl> <bibtext> Ma D., Duan H., Liu J., Li X., Zhou Z. The role of gangue on the mitigation of mining-induced hazards and environmental pollution: An experimental investigation. Sci. Total Environ. 2019; 664: 436-448. 10.1016/j.scitotenv.2019.02.059. 30754011</bibtext> </blist> <blist> <bibl id="bib5" idref="ref23" type="bt">5</bibl> <bibtext> Chen X., Zheng L., Dong X., Jiang C., Wei X. Sources and mixing of sulfate contamination in the water environment of a typical coal mining city, China: Evidence from stable isotope characteristics. Environ. Geochem. Health. 2020; 42: 2865-2879. 10.1007/s10653-020-00525-2</bibtext> </blist> <blist> <bibl id="bib6" idref="ref4" type="bt">6</bibl> <bibtext> Xiao G., Yang G., Jixi C., Ruyi Z. Deterioration mechanism of coal gangue concrete under the coupling action of bending load and freeze–thaw. Constr. Build. Mater. 2022; 338: 127265. 10.1016/j.conbuildmat.2022.127265</bibtext> </blist> <blist> <bibl id="bib7" idref="ref65" type="bt">7</bibl> <bibtext> Wu Q.-h., Weng L., Zhao Y.-l., Feng F. Influence of infilling stiffness on mechanical and fracturing responses of hollow cylindrical sandstone under uniaxial compression tests. J. Cent. South Univ. 2021; 28: 2485-2498. 10.1007/s11771-021-4781-z</bibtext> </blist> <blist> <bibl id="bib8" idref="ref5" type="bt">8</bibl> <bibtext> Wu Q., Weng L., Zhao Y., Zhao F., Peng W., Zhang S. Deformation and cracking characteristics of ring-shaped granite with inclusion under diametrical compression. Arab. J. Geosci. 2020; 13: 681. 10.1007/s12517-020-05718-8</bibtext> </blist> <blist> <bibl id="bib9" idref="ref6" type="bt">9</bibl> <bibtext> Li Y., Liu S., Guan X. Multitechnique investigation of concrete with coal gangue. Constr. Build. Mater. 2021; 301: 124114. 10.1016/j.conbuildmat.2021.124114</bibtext> </blist> <blist> <bibtext> Qiu J., Zhu M., Zhou Y., Guan X. Effect and mechanism of coal gangue concrete modification by fly ash. Constr. Build. Mater. 2021; 294: 123563. 10.1016/j.conbuildmat.2021.123563</bibtext> </blist> <blist> <bibtext> Zhao B., Zhai D., Xin J., Guo Y., Wang J., Wei Q., Wang H., Tang R. Rheological properties, mechanical characteristics, and microstructures of gangue-cemented paste backfill: Linking to loess doses. Arab. J. Geosci. 2022; 15: 244. 10.1007/s12517-022-09472-x</bibtext> </blist> <blist> <bibtext> Zhao Y., Yang C., Li K., Qu F., Yan C., Wu Z. Toward understanding the activation and hydration mechanisms of composite activated coal gangue geopolymer. Constr. Build. Mater. 2022; 318: 125999. 10.1016/j.conbuildmat.2021.125999</bibtext> </blist> <blist> <bibtext> Su Z., Li X., Zhang Q. Influence of thermally activated coal gangue powder on the structure of the interfacial transition zone in concrete. J. Clean. Prod. 2022; 363: 132408. 10.1016/j.jclepro.2022.132408</bibtext> </blist> <blist> <bibtext> Chen M., Wen P., Wang C., Chai Z., Gao Z. Evaluation of particle size distribution and mechanical properties of mineral waste slag as filling material. Constr. Build. Mater. 2020; 253: 119183. 10.1016/j.conbuildmat.2020.119183</bibtext> </blist> <blist> <bibtext> Li J., Zhang J., Yang X., Zhang A., Yu M. Monte Carlo simulations of deformation behaviour of unbound granular materials based on a real aggregate library. Int. J. Pavement Eng. 2023; 24: 2165650. 10.1080/10298436.2023.2165650</bibtext> </blist> <blist> <bibtext> Li J., Zhang J., Zhang A., Peng J. Evaluation on Deformation Behavior of Granular Base Material during Repeated Load Triaxial Testing by Discrete-Element Method. Int. J. Geomech. 2022; 22: 04022210. 10.1061/(ASCE)GM.1943-5622.0002539</bibtext> </blist> <blist> <bibtext> Yao Y., Li J., Ni J., Liang C., Zhang A. Effects of gravel content and shape on shear behaviour of soil-rock mixture: Experiment and DEM modelling. Comput. Geotech. 2022; 141: 104476. 10.1016/j.compgeo.2021.104476</bibtext> </blist> <blist> <bibtext> JTG 3430-2020. Test Methods of Soils for Highway Engineering; China Communications Press: Beijing, China. 2020(In Chinese)</bibtext> </blist> <blist> <bibtext> Chen W.B., Yin J.H., Feng W.Q., Borana L., Chen R.P. Accumulated Permanent Axial Strain of a Subgrade Fill under Cyclic High-Speed Railway Loading. Int. J. Geomech. 2018; 18: 04018018. 10.1061/(ASCE)GM.1943-5622.0001119</bibtext> </blist> <blist> <bibtext> Cai Y.Q., Chen J.Y., Cao Z.G., Gu C., Wang J. Influence of Grain Gradation on Permanent Strain of Unbound Granular Materials under Low Confining Pressure and High-Cycle Loading. Int. J. Geomech. 2018; 18: 04017156. 10.1061/(ASCE)GM.1943-5622.0001054</bibtext> </blist> <blist> <bibtext> Leng W., Xiao Y., Nie R.-s., Zhou W., Liu W. Investigating Strength and Deformation Characteristics of Heavy-Haul Railway Embankment Materials Using Large-Scale Undrained Cyclic Triaxial Tests. Int. J. Geomech. 2017; 17: 04017074. 10.1061/(ASCE)GM.1943-5622.0000956</bibtext> </blist> <blist> <bibtext> Zhang Z.-T., Gao W.-H. Effect of different test methods on the disintegration behaviour of soft rock and the evolution model of disintegration breakage under cyclic wetting and drying. Eng. Geol. 2020; 279: 105888. 10.1016/j.enggeo.2020.105888</bibtext> </blist> <blist> <bibtext> Zhang Z.-T., Gao W.-H., Wang X., Zhang J.-Q., Tang X.-Y. Degradation-induced evolution of particle roundness and its effect on the shear behaviour of railway ballast. Transp. Geotech. 2020; 24: 100388. 10.1016/j.trgeo.2020.100388</bibtext> </blist> <blist> <bibtext> Zhang Z.-T., Gao W.-H., Zeng C.-F., Tang X.-Y., Wu J. Evolution of the disintegration breakage of red-bed soft rock using a logistic regression model. Transp. Geotech. 2020; 24: 100382. 10.1016/j.trgeo.2020.100382</bibtext> </blist> <blist> <bibtext> Zhu J.G., Guo W.L., Wen Y.F., Yin J.H., Zhou C. New Gradation Equation and Applicability for Particle-Size Distributions of Various Soils. Int. J. Geomech. 2018; 18: 04017155. 10.1061/(ASCE)GM.1943-5622.0001082</bibtext> </blist> <blist> <bibtext> Wu E.L., Zhu J.G., Chen G., Wang L. Experimental study of effect of gradation on compaction properties of rockfill materials. Bull. Eng. Geol. Environ. 2020; 79: 2863-2869. 10.1007/s10064-020-01737-7</bibtext> </blist> <blist> <bibtext> García-de-la-Oliva J.L., Moreno-Robles J. Granular sub-ballast compaction control methods in high-speed railway lines. Spanish experience. Transp. Geotech. 2019; 19: 135-145. 10.1016/j.trgeo.2019.03.003</bibtext> </blist> <blist> <bibtext> Trinh V.N., Tang A.M., Cui Y.-J., Dupla J.-C., Canou J., Calon N., Lambert L., Robinet A., Schoen O. Mechanical characterisation of the fouled ballast in ancient railway track substructure by large-scale triaxial tests. Soils Found. 2012; 52: 511-523. 10.1016/j.sandf.2012.05.009</bibtext> </blist> <blist> <bibtext> Lenart S., Koseki J., Miyashita Y., Sato T. Large-scale triaxial tests of dense gravel material at low confining pressures. Soils Found. 2014; 54: 45-55. 10.1016/j.sandf.2013.12.005</bibtext> </blist> <blist> <bibtext> Wichtmann T., Rondón H.A., Niemunis A., Triantafyllidis T., Lizcano A. Prediction of Permanent Deformations in Pavements Using a High-Cycle Accumulation Model. J. Geotech. Geoenviron. Eng. 2010; 136: 728-740. 10.1061/(ASCE)GT.1943-5606.0000275</bibtext> </blist> <blist> <bibtext> Kong X., Liu J., Zou D., Liu H. Stress-Dilatancy Relationship of Zipingpu Gravel under Cyclic Loading in Triaxial Stress States. Int. J. Geomech. 2016; 16: 04016001. 10.1061/(ASCE)GM.1943-5622.0000584</bibtext> </blist> <blist> <bibtext> Chen G., Wu Q., Zhao K., Shen Z., Yang J. A Binary Packing Material–Based Procedure for Evaluating Soil Liquefaction Triggering during Earthquakes. J. Geotech. Geoenviron. Eng. 2020; 146: 04020040. 10.1061/(ASCE)GT.1943-5606.0002263</bibtext> </blist> <blist> <bibtext> Wu Q., Ma W.j., Liu Q., Zhao K., Chen G. Dynamic shear modulus and damping ratio of rubber-sand mixtures with a wide range of rubber content. Mater. Today Commun. 2021; 27: 102341. 10.1016/j.mtcomm.2021.102341</bibtext> </blist> <blist> <bibtext> Huang B., Ding H., Chen Y. Simulation of high-speed train load by dynamic triaxial tests. Chin. J. Geotech. Eng. 2011; 33: 195-202(In Chinese)</bibtext> </blist> <blist> <bibtext> Li Y., Zhang J., Zhu Z., Wang X., Yu Z. Accumulated deformation of gravel filler of subgrade under cyclic loading. Adv. Eng. Sci. 2018; 50: 130-137(In Chinese)</bibtext> </blist> <blist> <bibtext> Wang C., Chen Y. Study on effect of traffic loading induced static deviator stress on undrained cyclic properties of saturated soft clay. Chin. J. Geotech. Eng. 2007; 29: 1742-1747(In Chinese)</bibtext> </blist> <blist> <bibtext> Wang J., Chang Z., Tang Y., Tang Y. Dynamic triaxial test analysis of reinforced gravel soil under cyclic loading. Rock Soil Mech. 2020; 41: 2851-2860(In Chinese)</bibtext> </blist> <blist> <bibtext> Wu E., Zhu J., Guo W., Zhang Z. Effect of Gradation on the Compactability of Coarse-Grained Soils. KSCE J. Civ. Eng. 2020; 24: 356-364. 10.1007/s12205-020-1936-7</bibtext> </blist> <blist> <bibtext> Zhang Z., Gao W., Liu C., Liu Z., Feng X. Experimental study on the effect of gradation on the compaction and strength characteristics of coal gangue subgrade filler. J. Eng. Geol. 2022. 10.13544/j.cnki.jeg.2021-0564(In Chinese)</bibtext> </blist> <blist> <bibtext> Monismith C.L., Ogawa N., Freeme C.R. Permanent deformation characteristics of subgrade soils due to repeated load. Transp. Res. Rec. 1975; 537: 1-17</bibtext> </blist> <blist> <bibtext> Liu B., Pham D.P., Su Q., Gui B. Deformation characteristics of subgrade graded gravel with different water contents. Rock Soil Mech. 2016; 37: 1365-1372(In Chinese)</bibtext> </blist> <blist> <bibtext> Mu R., Huang Z., Pu S., Yao Z., Cheng X. Accumulated deformation characteristics of undisturbed red clay under cyclic loading and dynamic constitutive relationship. Rock Soil Mech. 2020; S2: 1-10(In Chinese)</bibtext> </blist> <blist> <bibtext> Mei H., Leng W., Nie R., Li Y. Study on dynamic behavior and permanent deformation characteristics of coarse-grained soil. J. Huazhong Univ. of Sci. Technol. (Nat. Sci. Ed.). 2019; 47: 113-119(In Chinese)</bibtext> </blist> </ref> <aug> <p>By Zong-Tang Zhang; Yan-Hao Wang; Wen-Hua Gao; Wei Hu and Shun-Kai Liu</p> <p>Reported by Author; Author; Author; Author; Author</p> </aug> <nolink nlid="nl1" bibid="bib11" firstref="ref7"></nolink> <nolink nlid="nl2" bibid="bib12" firstref="ref8"></nolink> <nolink nlid="nl3" bibid="bib13" firstref="ref9"></nolink> <nolink nlid="nl4" bibid="bib14" firstref="ref10"></nolink> <nolink nlid="nl5" bibid="bib15" firstref="ref11"></nolink> <nolink nlid="nl6" bibid="bib17" firstref="ref12"></nolink> <nolink nlid="nl7" bibid="bib18" firstref="ref16"></nolink> <nolink nlid="nl8" bibid="bib19" firstref="ref17"></nolink> <nolink nlid="nl9" bibid="bib21" firstref="ref18"></nolink> <nolink nlid="nl10" bibid="bib20" firstref="ref25"></nolink> <nolink nlid="nl11" bibid="bib22" firstref="ref27"></nolink> <nolink nlid="nl12" bibid="bib24" firstref="ref28"></nolink> <nolink nlid="nl13" bibid="bib25" firstref="ref30"></nolink> <nolink nlid="nl14" bibid="bib27" firstref="ref38"></nolink> <nolink nlid="nl15" bibid="bib29" firstref="ref42"></nolink> <nolink nlid="nl16" bibid="bib31" firstref="ref43"></nolink> <nolink nlid="nl17" bibid="bib32" firstref="ref45"></nolink> <nolink nlid="nl18" bibid="bib33" firstref="ref46"></nolink> <nolink nlid="nl19" bibid="bib34" firstref="ref47"></nolink> <nolink nlid="nl20" bibid="bib35" firstref="ref50"></nolink> <nolink nlid="nl21" bibid="bib37" firstref="ref51"></nolink> <nolink nlid="nl22" bibid="bib36" firstref="ref52"></nolink> <nolink nlid="nl23" bibid="bib26" firstref="ref59"></nolink> <nolink nlid="nl24" bibid="bib38" firstref="ref60"></nolink> <nolink nlid="nl25" bibid="bib39" firstref="ref61"></nolink> <nolink nlid="nl26" bibid="bib40" firstref="ref64"></nolink> <nolink nlid="nl27" bibid="bib41" firstref="ref68"></nolink> <nolink nlid="nl28" bibid="bib10" firstref="ref71"></nolink> <nolink nlid="nl29" bibid="bib42" firstref="ref76"></nolink> <nolink nlid="nl30" bibid="bib43" firstref="ref97"></nolink>
CustomLinks:
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=20763417&ISBN=&volume=13&issue=7&date=20230301&spage=4128&pages=4128-4128&title=Applied Sciences&atitle=Permanent%20Deformation%20and%20Its%20Unified%20Model%20of%20Coal%20Gangue%20Subgrade%20Filler%20under%20Traffic%20Cyclic%20Loading&aulast=Zong-Tang%20Zhang&id=DOI:10.3390/app13074128
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/728fa44ef8ce47f6871c1692eb437118
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.728fa44ef8ce47f6871c1692eb437118
RelevancyScore: 936
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 936.003051757813
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Permanent Deformation and Its Unified Model of Coal Gangue Subgrade Filler under Traffic Cyclic Loading
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Zong-Tang+Zhang%22">Zong-Tang Zhang</searchLink><br /><searchLink fieldCode="AR" term="%22Yan-Hao+Wang%22">Yan-Hao Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Wen-Hua+Gao%22">Wen-Hua Gao</searchLink><br /><searchLink fieldCode="AR" term="%22Wei+Hu%22">Wei Hu</searchLink><br /><searchLink fieldCode="AR" term="%22Shun-Kai+Liu%22">Shun-Kai Liu</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Applied Sciences, Vol 13, Iss 7, p 4128 (2023)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: MDPI AG, 2023.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2023
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Technology<br />LCC:Engineering (General). Civil engineering (General)<br />LCC:Biology (General)<br />LCC:Physics<br />LCC:Chemistry
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22dynamic+behaviors%22">dynamic behaviors</searchLink><br /><searchLink fieldCode="DE" term="%22cyclic+loading%22">cyclic loading</searchLink><br /><searchLink fieldCode="DE" term="%22permanent+deformation%22">permanent deformation</searchLink><br /><searchLink fieldCode="DE" term="%22coal+gangue+subgrade+filler%22">coal gangue subgrade filler</searchLink><br /><searchLink fieldCode="DE" term="%22large-scale+triaxial+test%22">large-scale triaxial test</searchLink><br /><searchLink fieldCode="DE" term="%22Technology%22">Technology</searchLink><br /><searchLink fieldCode="DE" term="%22Engineering+%28General%29%2E+Civil+engineering+%28General%29%22">Engineering (General). Civil engineering (General)</searchLink><br /><searchLink fieldCode="DE" term="%22TA1-2040%22">TA1-2040</searchLink><br /><searchLink fieldCode="DE" term="%22Biology+%28General%29%22">Biology (General)</searchLink><br /><searchLink fieldCode="DE" term="%22QH301-705%2E5%22">QH301-705.5</searchLink><br /><searchLink fieldCode="DE" term="%22Physics%22">Physics</searchLink><br /><searchLink fieldCode="DE" term="%22QC1-999%22">QC1-999</searchLink><br /><searchLink fieldCode="DE" term="%22Chemistry%22">Chemistry</searchLink><br /><searchLink fieldCode="DE" term="%22QD1-999%22">QD1-999</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Using coal gangue as subgrade filler can not only solve the environmental problems of coal mine waste accumulation but also decrease the subgrade cost, which has important theoretical and practical significance. A series of cyclic triaxial tests was carried out using the large-scale dynamic and static triaxial apparatus (LSDSTA) to investigate the permanent deformation (ε) of coal gangue subgrade filler (CGSF) under cyclic loading. Experimental grading was designed by using the fractal model grading equation (FMGE), and then well-grading limits of CGSF were captured. The relationship curve between ε and the numbers of cyclic loading (N) can be divided into three stages, i.e., the rapid growth phase, the deceleration growth phase, and the approaching stability phase. N = 1000 can be used as the criterion for reaching the stable stage of CGSF. The effect of confining pressure (σ3′) on ε is related to the level of σ3′. The effect of σ3′ on ε is significant when σ3′ is smaller, whereas the influence of σ3′ on ε is smaller when σ3′ is larger. Furthermore, the influence of grading (Df) on ε of coal gangue samples is significant. With the increase of Df, ε first increases and then decreases, reflecting that there is an obvious optimal grading for coal gangue samples under cyclic loading. Moreover, the effect of compaction degree (Dc) on ε of CGSF depends on the level of Dc. ε is hardly affected when Dc is smaller, whereas increasing Dc has a significant effect on restraining ε when Dc is bigger. In addition, according to the analysis of the permanent deformation curve for CGSF, the unified calculation model of permanent deformation for CGSF under cyclic loading is established. Compared with the existing permanent deformation models, the proposed model in this paper can better describe the permanent deformation of CGSF under cyclic loading. Finally, the model parameters are analyzed, and the model is verified.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2076-3417
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://www.mdpi.com/2076-3417/13/7/4128; https://doaj.org/toc/2076-3417
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.3390/app13074128
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/728fa44ef8ce47f6871c1692eb437118" linkWindow="_blank">https://doaj.org/article/728fa44ef8ce47f6871c1692eb437118</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.728fa44ef8ce47f6871c1692eb437118
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.728fa44ef8ce47f6871c1692eb437118
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.3390/app13074128
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 1
        StartPage: 4128
    Subjects:
      – SubjectFull: dynamic behaviors
        Type: general
      – SubjectFull: cyclic loading
        Type: general
      – SubjectFull: permanent deformation
        Type: general
      – SubjectFull: coal gangue subgrade filler
        Type: general
      – SubjectFull: large-scale triaxial test
        Type: general
      – SubjectFull: Technology
        Type: general
      – SubjectFull: Engineering (General). Civil engineering (General)
        Type: general
      – SubjectFull: TA1-2040
        Type: general
      – SubjectFull: Biology (General)
        Type: general
      – SubjectFull: QH301-705.5
        Type: general
      – SubjectFull: Physics
        Type: general
      – SubjectFull: QC1-999
        Type: general
      – SubjectFull: Chemistry
        Type: general
      – SubjectFull: QD1-999
        Type: general
    Titles:
      – TitleFull: Permanent Deformation and Its Unified Model of Coal Gangue Subgrade Filler under Traffic Cyclic Loading
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Zong-Tang Zhang
      – PersonEntity:
          Name:
            NameFull: Yan-Hao Wang
      – PersonEntity:
          Name:
            NameFull: Wen-Hua Gao
      – PersonEntity:
          Name:
            NameFull: Wei Hu
      – PersonEntity:
          Name:
            NameFull: Shun-Kai Liu
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 03
              Type: published
              Y: 2023
          Identifiers:
            – Type: issn-print
              Value: 20763417
          Numbering:
            – Type: volume
              Value: 13
            – Type: issue
              Value: 7
          Titles:
            – TitleFull: Applied Sciences
              Type: main
ResultId 1