A 96 GeV Higgs boson in the N2HDM

Bibliographic Details
Title: A 96 GeV Higgs boson in the N2HDM
Authors: T. Biekötter, M. Chakraborti, S. Heinemeyer
Source: European Physical Journal C: Particles and Fields, Vol 80, Iss 1, Pp 1-23 (2020)
Publisher Information: SpringerOpen, 2020.
Publication Year: 2020
Collection: LCC:Astrophysics
LCC:Nuclear and particle physics. Atomic energy. Radioactivity
Subject Terms: Astrophysics, QB460-466, Nuclear and particle physics. Atomic energy. Radioactivity, QC770-798
More Details: Abstract We discuss a $$\sim 3\,\sigma $$ ∼3σ signal (local) in the light Higgs-boson search in the diphoton decay mode at $$\sim 96 \,\, \mathrm {GeV}$$ ∼96GeV as reported by CMS, together with a $$\sim 2\,\sigma $$ ∼2σ excess (local) in the $$b {{\bar{b}}}$$ bb¯ final state at LEP in the same mass range. We interpret this possible signal as a Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). We find that the lightest Higgs boson of the N2HDM can perfectly fit both excesses simultaneously, while the second lightest state is in full agreement with the Higgs-boson measurements at $$125 \,\, \mathrm {GeV}$$ 125GeV , and the full Higgs-boson sector is in agreement with all Higgs exclusion bounds from LEP, the Tevatron and the LHC as well as other theoretical and experimental constraints. We show that only the N2HDM type II and IV can fit both the LEP excess and the CMS excess with a large ggF production component at $$\sim 96 \,\, \mathrm {GeV}$$ ∼96GeV . We derive bounds on the N2HDM Higgs sector from a fit to both excesses and describe how this signal can be further analyzed at the LHC and at future $$e^+e^-$$ e+e- colliders, such as the ILC.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1434-6044
1434-6052
Relation: https://doaj.org/toc/1434-6044; https://doaj.org/toc/1434-6052
DOI: 10.1140/epjc/s10052-019-7561-2
Access URL: https://doaj.org/article/5b7f44d989684127b28f454b653f4ac5
Accession Number: edsdoj.5b7f44d989684127b28f454b653f4ac5
Database: Directory of Open Access Journals
Full text is not displayed to guests.
FullText Links:
  – Type: pdflink
    Url: https://content.ebscohost.com/cds/retrieve?content=AQICAHjPtM4BHU3ZchRwgzYmadcigk49r9CVlbU7V5F6lgH7WwFNORh3P0bta5mrU-TrTnldAAAA4jCB3wYJKoZIhvcNAQcGoIHRMIHOAgEAMIHIBgkqhkiG9w0BBwEwHgYJYIZIAWUDBAEuMBEEDFvReDs1LT43FRqqswIBEICBmu-_FO7P4imoOGiUztnkYvZWSRnNFMvqoOkivSrdO60RWL4lmYbbJB--O3l4Alk7lB4BkFi1ALln-bTQM3ii07eO8ifow0s8IPv-GmMM40LC_YKIbowXuSbWpFvE2gU4Fr-AozYD7XSIw7toCyt4FicbPqiNI28YXmzgSRqQlHV9VdEsZ3O3xcVdSmtAmp5_lRZDXQ618mulkzs=
Text:
  Availability: 1
  Value: <anid>AN0141768308;c7g01jan.20;2020Feb18.23:11;v2.2.500</anid> <title id="AN0141768308-1">A 96 GeV Higgs boson in the N2HDM </title> <sbt id="AN0141768308-2">Introduction</sbt> <p>We discuss a ∼ 3 σ signal (local) in the light Higgs-boson search in the diphoton decay mode at ∼ 96 GeV as reported by CMS, together with a ∼ 2 σ excess (local) in the b b ¯ final state at LEP in the same mass range. We interpret this possible signal as a Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). We find that the lightest Higgs boson of the N2HDM can perfectly fit both excesses simultaneously, while the second lightest state is in full agreement with the Higgs-boson measurements at 125 GeV , and the full Higgs-boson sector is in agreement with all Higgs exclusion bounds from LEP, the Tevatron and the LHC as well as other theoretical and experimental constraints. We show that only the N2HDM type II and IV can fit both the LEP excess and the CMS excess with a large ggF production component at ∼ 96 GeV . We derive bounds on the N2HDM Higgs sector from a fit to both excesses and describe how this signal can be further analyzed at the LHC and at future e + e - colliders, such as the ILC.</p> <p>In the year 2012 the ATLAS and CMS collaborations have discovered a new particle that – within theoretical and experimental uncertainties – is consistent with the existence of a Standard-Model (SM) Higgs boson at a mass of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>125</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> [[<reflink idref="bib1" id="ref1">1</reflink>]–[<reflink idref="bib3" id="ref2">3</reflink>]]. No conclusive signs of physics beyond the SM have been found so far at the LHC. However, the measurements of Higgs-boson couplings, which are known experimentally to a precision of roughly <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>20</mn><mo>%</mo></mrow></math> </ephtml> , leave room for Beyond Standard-Model (BSM) interpretations. Many BSM models possess extended Higgs-boson sectors. Consequently, one of the main tasks of the LHC Run II and beyond is to determine whether the observed scalar boson forms part of the Higgs sector of an extended model. Extended Higgs-boson sectors naturally contain additional Higgs bosons with masses larger than <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>125</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> . However, many extensions also offer the possibility of additional Higgs bosons <emph>lighter</emph> than <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>125</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> (for some examples, see [[<reflink idref="bib4" id="ref3">4</reflink>]–[<reflink idref="bib7" id="ref4">7</reflink>]]). Consequently, the search for lighter Higgs bosons forms an important part in the BSM Higgs-boson analyses.</p> <p>Searches for Higgs bosons below <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>125</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> have been performed at LEP [[<reflink idref="bib8" id="ref5">8</reflink>]–[<reflink idref="bib10" id="ref6">10</reflink>]], the Tevatron [[<reflink idref="bib11" id="ref7">11</reflink>]] and the LHC [[<reflink idref="bib12" id="ref8">12</reflink>]–[<reflink idref="bib15" id="ref9">15</reflink>]]. LEP reported a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2.3</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> local excess observed in the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>e</mi><mo>+</mo></msup><msup><mi>e</mi><mo>-</mo></msup><mo stretchy="false">→</mo><mi>Z</mi><mrow><mo stretchy="false">(</mo><mi>H</mi><mo stretchy="false">→</mo><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></math> </ephtml> searches [[<reflink idref="bib9" id="ref10">9</reflink>]], which would be consistent with a scalar of mass <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>98</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> , but due to the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></math> </ephtml> final state the mass resolution is rather coarse. The excess corresponds to</p> <p>1.1 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>μ</mi><mi mathvariant="normal">LEP</mi></msub><mo>=</mo><mfrac><mrow><mi>σ</mi><mfenced close=")" open="(" separators=""><msup><mi>e</mi><mo>+</mo></msup><msup><mi>e</mi><mo>-</mo></msup><mo stretchy="false">→</mo><mi>Z</mi><mi>ϕ</mi><mo stretchy="false">→</mo><mi>Z</mi><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow><mrow><msup><mi>σ</mi><mi mathvariant="normal">SM</mi></msup><mfenced close=")" open="(" separators=""><msup><mi>e</mi><mo>+</mo></msup><msup><mi>e</mi><mo>-</mo></msup><mo stretchy="false">→</mo><mi>Z</mi><mi>H</mi><mo stretchy="false">→</mo><mi>Z</mi><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mfenced></mrow></mfrac><mo>=</mo><mn>0.117</mn><mo>±</mo><mn>0.057</mn><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>where the signal strength <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">LEP</mi></msub></math> </ephtml> is the measured cross section normalized to the SM expectation, with the SM Higgs-boson mass at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>98</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> . The value for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">LEP</mi></msub></math> </ephtml> was extracted in Ref. [[<reflink idref="bib16" id="ref11">16</reflink>]] using methods described in Ref. [[<reflink idref="bib17" id="ref12">17</reflink>]].</p> <p>Interestingly, recent CMS Run II results [[<reflink idref="bib13" id="ref13">13</reflink>]] for Higgs-boson searches in the diphoton final state show a local excess of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>3</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> around <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>96</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> , with a similar excess of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> in the Run I data at a comparable mass [[<reflink idref="bib18" id="ref14">18</reflink>]]. In this case the excess corresponds to (combining 7, 8 and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>13</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">TeV</mi></mrow></math> </ephtml> data, and assuming that the <emph>gg</emph> production dominates)</p> <p>1.2 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub><mo>=</mo><mfrac><mrow><mi>σ</mi><mfenced close=")" open="(" separators=""><mi>g</mi><mi>g</mi><mo stretchy="false">→</mo><mi>ϕ</mi><mo stretchy="false">→</mo><mi>γ</mi><mi>γ</mi></mfenced></mrow><mrow><msup><mi>σ</mi><mi mathvariant="normal">SM</mi></msup><mfenced close=")" open="(" separators=""><mi>g</mi><mi>g</mi><mo stretchy="false">→</mo><mi>H</mi><mo stretchy="false">→</mo><mi>γ</mi><mi>γ</mi></mfenced></mrow></mfrac><mo>=</mo><mn>0.6</mn><mo>±</mo><mn>0.2</mn><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>First Run II results from ATLAS with 80 fb <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow /><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> </ephtml> in the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>γ</mi><mi>γ</mi></mrow></math> </ephtml> searches below 125 GeV were recently published [[<reflink idref="bib15" id="ref15">15</reflink>]]. No significant excess above the SM expectation was observed in the mass range between 65 and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>110</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> . However, the limit on cross section times branching ratio obtained in the diphoton final state by ATLAS is not only well above <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub></math> </ephtml> , but even weaker than the corresponding upper limit obtained by CMS at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>96</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> . This was illustrated in Fig. 1 in Ref. [[<reflink idref="bib19" id="ref16">19</reflink>]].</p> <p>Since the CMS and the LEP excesses in the light Higgs-boson searches are found effectively at the same mass, this gives rise to the question whether they might be of a common origin – and if there exists a model which could explain the two excesses simultaneously, while being in agreement with all other Higgs-boson related limits and measurements. A review about these possibilities was given in Refs. [[<reflink idref="bib19" id="ref17">19</reflink>]]. The list comprises of type I 2HDMs [[<reflink idref="bib21" id="ref18">21</reflink>]], a radion model [[<reflink idref="bib23" id="ref19">23</reflink>]], a minimal dilaton model [[<reflink idref="bib24" id="ref20">24</reflink>]], as well as supersymmetric models [[<reflink idref="bib25" id="ref21">25</reflink>]–[<reflink idref="bib27" id="ref22">27</reflink>], [<reflink idref="bib42" id="ref23">42</reflink>]].</p> <p>Motivated by the Hierarchy Problem, Supersymmetric extensions of the SM play a prominent role in the exploration of new physics. Supersymmetry (SUSY) doubles the particle degrees of freedom by predicting two scalar partners for all SM fermions, as well as fermionic partners to all SM bosons. The simplest SUSY extension of the SM is the Minimal Supersymmetric Standard Model (MSSM) [[<reflink idref="bib28" id="ref24">28</reflink>]]. In contrast to the single Higgs doublet of the SM, the MSSM by construction, requires the presence of two Higgs doublets, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">Φ</mi><mn>1</mn></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">Φ</mi><mn>2</mn></msub></math> </ephtml> . In the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> conserving case the MSSM Higgs sector consists of two <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even, one <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -odd and two charged Higgs bosons. The light (or the heavy) <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even MSSM Higgs boson can be interpreted as the signal discovered at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>125</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> [[<reflink idref="bib6" id="ref25">6</reflink>]] (see Refs. [[<reflink idref="bib30" id="ref26">30</reflink>]] for recent updates). However, in Ref. [[<reflink idref="bib30" id="ref27">30</reflink>]] it was demonstrated that the MSSM cannot explain the CMS excess in the diphoton final state.</p> <p>Going beyond the MSSM, a well-motivated extension is given by the Next-to-MSSM (NMSSM) (see [[<reflink idref="bib32" id="ref28">32</reflink>]] for reviews). The NMSSM provides a solution for the so-called " <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> </ephtml> problem" by naturally associating an adequate scale to the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> </ephtml> parameter appearing in the MSSM superpotential [[<reflink idref="bib34" id="ref29">34</reflink>]]. In the NMSSM a new singlet superfield is introduced, which only couples to the Higgs- and sfermion-sectors, giving rise to an effective <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> </ephtml> -term, proportional to the vacuum expectation value (vev) of the scalar singlet. In the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> conserving case, the NMSSM Higgs sector consists of three <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even Higgs bosons, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>i</mi></msub></math> </ephtml> ( <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></math> </ephtml> ), two <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -odd Higgs bosons, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>a</mi><mi>j</mi></msub></math> </ephtml> ( <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>j</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn></mrow></math> </ephtml> ), and the charged Higgs boson pair <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>H</mi><mo>±</mo></msup></math> </ephtml> . In the NMSSM not only the lightest but also the second lightest <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even Higgs boson can be interpreted as the signal observed at about <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>125</mn><mspace width="3.33333pt" /><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> , see, e.g., [[<reflink idref="bib7" id="ref30">7</reflink>], [<reflink idref="bib36" id="ref31">36</reflink>]]. In Ref. [[<reflink idref="bib26" id="ref32">26</reflink>]] it was found that the NMSSM can indeed simultaneously satisfy the two excesses mentioned above. In this case, the Higgs boson at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>96</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> has a large singlet component, but also a sufficiently large doublet component to give rise to the two excesses.</p> <p>A natural extension of the NMSSM is the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>μ</mi><mi>ν</mi><mi mathvariant="normal">SSM</mi></mrow></math> </ephtml> , in which the singlet superfield is interpreted as a right-handed neutrino superfield [[<reflink idref="bib37" id="ref33">37</reflink>]] (see Refs. [[<reflink idref="bib39" id="ref34">39</reflink>]–[<reflink idref="bib41" id="ref35">41</reflink>]] for reviews). The <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>μ</mi><mi>ν</mi><mi mathvariant="normal">SSM</mi></mrow></math> </ephtml> is the simplest extension of the MSSM that can provide massive neutrinos through a see-saw mechanism at the electroweak scale. A Yukawa coupling for right-handed neutrinos of the order of the electron Yukawa coupling is introduced that induces the explicit breaking of <emph>R</emph>-parity. Also in the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>μ</mi><mi>ν</mi><mi mathvariant="normal">SSM</mi></mrow></math> </ephtml> the signal at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>125</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> can be interpreted as the lightest or the second lightest <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even scalar. In Ref. [[<reflink idref="bib25" id="ref36">25</reflink>]] the "one generation case" (only one generation of massive neutrinos) was analyzed: within the scalar sector the left- and right-handed sneutrinos mix with the doublet Higgs fields and form, assuming CP-conservation, six physical CP-even and five physical CP-odd states. However, due to the smallness of <emph>R</emph>-parity breaking in the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>μ</mi><mi>ν</mi><mi mathvariant="normal">SSM</mi></mrow></math> </ephtml> , the mixing of the doublet Higgses with the left-handed sneutrinos is very small. Consequently, in the one-generation case the Higgs-boson sector of the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>μ</mi><mi>ν</mi><mi mathvariant="normal">SSM</mi></mrow></math> </ephtml> , i.e. the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even/odd Higgs doublets and the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even/odd right handed sneutrino, resembles the Higgs-boson sector in the NMSSM. In Ref. [[<reflink idref="bib25" id="ref37">25</reflink>]] it was found that also the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>μ</mi><mi>ν</mi><mi mathvariant="normal">SSM</mi></mrow></math> </ephtml> can fit the CMS and the LEP excesses simultaneously. In this case the scalar at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>96</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> has a large right-handed sneutrino component. The same result was found in the three generation case (i.e. with three generations of massive neutrinos) [[<reflink idref="bib42" id="ref38">42</reflink>]].</p> <p>Motivated by the fact that two models with two Higgs doublets and (effectively) one Higgs singlet can fit the CMS excess in Eq. (1.2) and the LEP excess in Eq. (1.1), we investigate in this work the Next to minimal two Higgs doublet model (N2HDM) [[<reflink idref="bib43" id="ref39">43</reflink>]]. Similar to the models mentioned above, in the N2HDM the two Higgs doublets are supplemented with a real Higgs singlet, giving rise to one additional (potentially light) <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even Higgs boson. However, in comparison with the NMSSM and the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>μ</mi><mi>ν</mi><mi mathvariant="normal">SSM</mi></mrow></math> </ephtml> the N2HDM does not have to obey the SUSY relations in the Higgs-boson sector. Consequently, it allows to study how the potential fits the two excesses simultaneously in a more general way. Our paper is organized as follows. In Sect. 2 we describe the relevant features of the N2HDM. The experimental and theoretical constraints taken into account are given in Sect. 3. Details about the experimental excesses as well as how we implement them are summarized in Sect. 4. In Sect. 5 we show our results in the different versions of the N2HDM and discuss the possibilities to investigate these scenarios at current and future colliders. We conclude with Sect. 6.</p> <hd id="AN0141768308-3">The model: N2HDM</hd> <p>The N2HDM is the simplest extension of a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -conserving two Higgs doublet model (2HDM) in which the latter is augmented with a real scalar singlet Higgs field. The scalar potential of this model is given by [[<reflink idref="bib43" id="ref40">43</reflink>]]</p> <p>2.1 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi>V</mi><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><msubsup><mi>m</mi><mrow><mn>11</mn></mrow><mn>2</mn></msubsup><mrow><mo stretchy="false">|</mo></mrow><msub><mi mathvariant="normal">Φ</mi><mn>1</mn></msub><msup><mrow><mo stretchy="false">|</mo></mrow><mn>2</mn></msup><mo>+</mo><msubsup><mi>m</mi><mrow><mn>22</mn></mrow><mn>2</mn></msubsup><msup><mrow><mo stretchy="false">|</mo><msub><mi mathvariant="normal">Φ</mi><mn>2</mn></msub><mo stretchy="false">|</mo></mrow><mn>2</mn></msup><mo>-</mo><msubsup><mi>m</mi><mrow><mn>12</mn></mrow><mn>2</mn></msubsup><mrow><mo stretchy="false">(</mo><msubsup><mi mathvariant="normal">Φ</mi><mn>1</mn><mo>†</mo></msubsup><msub><mi mathvariant="normal">Φ</mi><mn>2</mn></msub><mo>+</mo><mi>h</mi><mo>.</mo><mi>c</mi><mo>.</mo><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mo>+</mo><mspace width="0.166667em" /><mfrac><msub><mi>λ</mi><mn>1</mn></msub><mn>2</mn></mfrac><msup><mrow><mo stretchy="false">(</mo><msubsup><mi mathvariant="normal">Φ</mi><mn>1</mn><mo>†</mo></msubsup><msub><mi mathvariant="normal">Φ</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mfrac><msub><mi>λ</mi><mn>2</mn></msub><mn>2</mn></mfrac><msup><mrow><mo stretchy="false">(</mo><msubsup><mi mathvariant="normal">Φ</mi><mn>2</mn><mo>†</mo></msubsup><msub><mi mathvariant="normal">Φ</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><mn>2</mn></msup></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mo>+</mo><mspace width="0.166667em" /><msub><mi>λ</mi><mn>3</mn></msub><mrow><mo stretchy="false">(</mo><msubsup><mi mathvariant="normal">Φ</mi><mn>1</mn><mo>†</mo></msubsup><msub><mi mathvariant="normal">Φ</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow><mrow><mo stretchy="false">(</mo><msubsup><mi mathvariant="normal">Φ</mi><mn>2</mn><mo>†</mo></msubsup><msub><mi mathvariant="normal">Φ</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><mo>+</mo><msub><mi>λ</mi><mn>4</mn></msub><mrow><mo stretchy="false">(</mo><msubsup><mi mathvariant="normal">Φ</mi><mn>1</mn><mo>†</mo></msubsup><msub><mi mathvariant="normal">Φ</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><mrow><mo stretchy="false">(</mo><msubsup><mi mathvariant="normal">Φ</mi><mn>2</mn><mo>†</mo></msubsup><msub><mi mathvariant="normal">Φ</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mo>+</mo><mspace width="0.166667em" /><mfrac><msub><mi>λ</mi><mn>5</mn></msub><mn>2</mn></mfrac><mrow><mo stretchy="false">[</mo><msup><mrow><mo stretchy="false">(</mo><msubsup><mi mathvariant="normal">Φ</mi><mn>1</mn><mo>†</mo></msubsup><msub><mi mathvariant="normal">Φ</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mo>+</mo><mi>h</mi><mo>.</mo><mi>c</mi><mo>.</mo><mo stretchy="false">]</mo></mrow></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mo>+</mo><mspace width="0.166667em" /><mfrac><mn>1</mn><mn>2</mn></mfrac><msubsup><mi>m</mi><mi>S</mi><mn>2</mn></msubsup><msubsup><mi mathvariant="normal">Φ</mi><mi>S</mi><mn>2</mn></msubsup><mo>+</mo><mfrac><msub><mi>λ</mi><mn>6</mn></msub><mn>8</mn></mfrac><msubsup><mi mathvariant="normal">Φ</mi><mi>S</mi><mn>4</mn></msubsup><mo>+</mo><mfrac><msub><mi>λ</mi><mn>7</mn></msub><mn>2</mn></mfrac><mrow><mo stretchy="false">(</mo><msubsup><mi mathvariant="normal">Φ</mi><mn>1</mn><mo>†</mo></msubsup><msub><mi mathvariant="normal">Φ</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow><msubsup><mi mathvariant="normal">Φ</mi><mi>S</mi><mn>2</mn></msubsup></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mo>+</mo><mspace width="0.166667em" /><mfrac><msub><mi>λ</mi><mn>8</mn></msub><mn>2</mn></mfrac><mrow><mo stretchy="false">(</mo><msubsup><mi mathvariant="normal">Φ</mi><mn>2</mn><mo>†</mo></msubsup><msub><mi mathvariant="normal">Φ</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow><msubsup><mi mathvariant="normal">Φ</mi><mi>S</mi><mn>2</mn></msubsup><mspace width="0.277778em" /><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">Φ</mi><mn>1</mn></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">Φ</mi><mn>2</mn></msub></math> </ephtml> are the two <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>S</mi><mi>U</mi><msub><mrow><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><mi>L</mi></msub></mrow></math> </ephtml> doublets whereas <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">Φ</mi><mi>S</mi></msub></math> </ephtml> is a real scalar singlet. To avoid the occurrence of tree-level flavor changing neutral currents (FCNC), a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Z</mi><mn>2</mn></msub></math> </ephtml> symmetry is imposed on the scalar potential of the model under which the scalar fields transform as</p> <p>2.2 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi mathvariant="normal">Φ</mi><mn>1</mn></msub><mo stretchy="false">→</mo><msub><mi mathvariant="normal">Φ</mi><mn>1</mn></msub><mo>,</mo><mspace width="1em" /><msub><mi mathvariant="normal">Φ</mi><mn>2</mn></msub><mo stretchy="false">→</mo><mo>-</mo><msub><mi mathvariant="normal">Φ</mi><mn>2</mn></msub><mo>,</mo><mspace width="1em" /><msub><mi mathvariant="normal">Φ</mi><mi>S</mi></msub><mo stretchy="false">→</mo><msub><mi mathvariant="normal">Φ</mi><mi>S</mi></msub><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>This <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Z</mi><mn>2</mn></msub></math> </ephtml> , however, is softly broken by the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>m</mi><mrow><mn>12</mn></mrow><mn>2</mn></msubsup></math> </ephtml> term in the Lagrangian. The extension of the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Z</mi><mn>2</mn></msub></math> </ephtml> symmetry to the Yukawa sector forbids tree-level FCNCs. As in the 2HDM, one can have four variants of the N2HDM, depending on the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Z</mi><mn>2</mn></msub></math> </ephtml> parities of the fermions. Table 1 lists the couplings for each type of fermion allowed by the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Z</mi><mn>2</mn></msub></math> </ephtml> parity in four different types of N2HDM. A second <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>Z</mi><mn>2</mn></msub></math> </ephtml> symmetry, under which the singlet field changes the sign, is broken once <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">Φ</mi><mi>S</mi></msub></math> </ephtml> acquires a vev.</p> <p>Allowed fermion couplings in the four types of N2HDM</p> <p> <ephtml> <table frame="hsides" rules="groups"><thead><tr><th align="left" /><th align="left"><p><italic>u</italic>-type</p></th><th align="left"><p><italic>d</italic>-type</p></th><th align="left"><p>Leptons</p></th></tr></thead><tbody><tr><td align="left"><p>Type I</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi mathvariant="normal">Φ</mi><mn>2</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq76.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi mathvariant="normal">Φ</mi><mn>2</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq77.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi mathvariant="normal">Φ</mi><mn>2</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq78.gif" /></p></td></tr><tr><td align="left"><p>Type II</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi mathvariant="normal">Φ</mi><mn>2</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq79.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi mathvariant="normal">Φ</mi><mn>1</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq80.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi mathvariant="normal">Φ</mi><mn>1</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq81.gif" /></p></td></tr><tr><td align="left"><p>Type III (lepton-specific)</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi mathvariant="normal">Φ</mi><mn>2</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq82.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi mathvariant="normal">Φ</mi><mn>2</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq83.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi mathvariant="normal">Φ</mi><mn>1</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq84.gif" /></p></td></tr><tr><td align="left"><p>Type IV (flipped)</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi mathvariant="normal">Φ</mi><mn>2</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq85.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi mathvariant="normal">Φ</mi><mn>1</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq86.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi mathvariant="normal">Φ</mi><mn>2</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq87.gif" /></p></td></tr></tbody></table> </ephtml> </p> <p>Taking the electroweak symmetry breaking (EWSB) minima to be neutral and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -conserving, the scalar fields after EWSB can be parametrised as</p> <p>2.3 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi mathvariant="normal">Φ</mi><mn>1</mn></msub><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="(" separators=""><mrow><mtable><mtr><mtd><msubsup><mi>ϕ</mi><mn>1</mn><mo>+</mo></msubsup></mtd></mtr><mtr><mtd><mrow><mrow /><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mn>1</mn></msub><mo>+</mo><msub><mi>ρ</mi><mn>1</mn></msub><mo>+</mo><mi>i</mi><msub><mi>η</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr></mtable></mrow></mfenced><mspace width="0.277778em" /><mo>,</mo><mspace width="1em" /></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><msub><mi mathvariant="normal">Φ</mi><mn>2</mn></msub><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfenced close=")" open="(" separators=""><mrow><mtable><mtr><mtd><msubsup><mi>ϕ</mi><mn>2</mn><mo>+</mo></msubsup></mtd></mtr><mtr><mtd><mrow><mrow /><mfrac><mn>1</mn><msqrt><mn>2</mn></msqrt></mfrac><mrow><mo stretchy="false">(</mo><msub><mi>v</mi><mn>2</mn></msub><mo>+</mo><msub><mi>ρ</mi><mn>2</mn></msub><mo>+</mo><mi>i</mi><msub><mi>η</mi><mn>2</mn></msub><mo stretchy="false">)</mo></mrow></mrow></mtd></mtr></mtable></mrow></mfenced><mspace width="0.277778em" /><mo>,</mo><mspace width="1em" /><msub><mi mathvariant="normal">Φ</mi><mi>S</mi></msub><mo>=</mo><msub><mi>v</mi><mi>S</mi></msub><mo>+</mo><msub><mi>ρ</mi><mi>S</mi></msub><mspace width="0.277778em" /><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>v</mi><mn>1</mn></msub><mo>,</mo><msub><mi>v</mi><mn>2</mn></msub><mo>,</mo><msub><mi>v</mi><mi>S</mi></msub></mrow></math> </ephtml> are the real vevs of the fields <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi mathvariant="normal">Φ</mi><mn>1</mn></msub><mo>,</mo><msub><mi mathvariant="normal">Φ</mi><mn>2</mn></msub></mrow></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">Φ</mi><mi>S</mi></msub></math> </ephtml> respectively. As in the 2HDM we define <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi><mo>:</mo><mo>=</mo><msub><mi>v</mi><mn>2</mn></msub><mo stretchy="false">/</mo><msub><mi>v</mi><mn>1</mn></msub></mrow></math> </ephtml> . As is evident from Eq. (2.3), under such a field configuration, the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -odd and charged Higgs sectors of the N2HDM remain completely unaltered with respect to its 2HDM counterpart. However, the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even scalar sector can undergo significant changes due the mixing among <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>ρ</mi><mn>1</mn></msub><mo>,</mo><msub><mi>ρ</mi><mn>2</mn></msub></mrow></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>ρ</mi><mi>S</mi></msub></math> </ephtml> , leading to a total of three <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even physical Higgs bosons. Thus, a rotation from the interaction to the physical basis can be achieved with the help of a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>3</mn><mo>×</mo><mn>3</mn></mrow></math> </ephtml> orthogonal matrix as</p> <p>2.4 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfenced close=")" open="(" separators=""><mrow><mtable><mtr><mtd><msub><mi>h</mi><mn>1</mn></msub></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>h</mi><mn>2</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>h</mi><mn>3</mn></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>=</mo><mi>R</mi><mfenced close=")" open="(" separators=""><mrow><mtable><mtr><mtd><msub><mi>ρ</mi><mn>1</mn></msub></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>ρ</mi><mn>2</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><msub><mi>ρ</mi><mi>S</mi></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>We use the convention <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>m</mi><msub><mi>h</mi><mn>1</mn></msub></msub><mo><</mo><msub><mi>m</mi><msub><mi>h</mi><mn>2</mn></msub></msub><mo><</mo><msub><mi>m</mi><msub><mi>h</mi><mn>3</mn></msub></msub></mrow></math> </ephtml> throughout the paper. The rotation matrix <emph>R</emph> can be parametrized as</p> <p>2.5 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mi>R</mi><mo>=</mo><mfenced close=")" open="(" separators=""><mrow><mtable><mtr><mtd><mrow><msub><mi>c</mi><msub><mi>α</mi><mn>1</mn></msub></msub><msub><mi>c</mi><msub><mi>α</mi><mn>2</mn></msub></msub></mrow></mtd><mtd><mrow><mrow /><msub><mi>s</mi><msub><mi>α</mi><mn>1</mn></msub></msub><msub><mi>c</mi><msub><mi>α</mi><mn>2</mn></msub></msub></mrow></mtd><mtd><mrow><mrow /><msub><mi>s</mi><msub><mi>α</mi><mn>2</mn></msub></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mo>-</mo><mo stretchy="false">(</mo><msub><mi>c</mi><msub><mi>α</mi><mn>1</mn></msub></msub><msub><mi>s</mi><msub><mi>α</mi><mn>2</mn></msub></msub><msub><mi>s</mi><msub><mi>α</mi><mn>3</mn></msub></msub><mo>+</mo><msub><mi>s</mi><msub><mi>α</mi><mn>1</mn></msub></msub><msub><mi>c</mi><msub><mi>α</mi><mn>3</mn></msub></msub><mo stretchy="false">)</mo></mrow></mtd><mtd><mrow><mrow /><msub><mi>c</mi><msub><mi>α</mi><mn>1</mn></msub></msub><msub><mi>c</mi><msub><mi>α</mi><mn>3</mn></msub></msub><mo>-</mo><msub><mi>s</mi><msub><mi>α</mi><mn>1</mn></msub></msub><msub><mi>s</mi><msub><mi>α</mi><mn>2</mn></msub></msub><msub><mi>s</mi><msub><mi>α</mi><mn>3</mn></msub></msub></mrow></mtd><mtd><mrow><mrow /><msub><mi>c</mi><msub><mi>α</mi><mn>2</mn></msub></msub><msub><mi>s</mi><msub><mi>α</mi><mn>3</mn></msub></msub></mrow></mtd></mtr><mtr><mtd><mrow><mrow /><mo>-</mo><msub><mi>c</mi><msub><mi>α</mi><mn>1</mn></msub></msub><msub><mi>s</mi><msub><mi>α</mi><mn>2</mn></msub></msub><msub><mi>c</mi><msub><mi>α</mi><mn>3</mn></msub></msub><mo>+</mo><msub><mi>s</mi><msub><mi>α</mi><mn>1</mn></msub></msub><msub><mi>s</mi><msub><mi>α</mi><mn>3</mn></msub></msub></mrow></mtd><mtd><mrow><mrow /><mo>-</mo><mo stretchy="false">(</mo><msub><mi>c</mi><msub><mi>α</mi><mn>1</mn></msub></msub><msub><mi>s</mi><msub><mi>α</mi><mn>3</mn></msub></msub><mo>+</mo><msub><mi>s</mi><msub><mi>α</mi><mn>1</mn></msub></msub><msub><mi>s</mi><msub><mi>α</mi><mn>2</mn></msub></msub><msub><mi>c</mi><msub><mi>α</mi><mn>3</mn></msub></msub><mo stretchy="false">)</mo></mrow></mtd><mtd><mrow><mrow /><msub><mi>c</mi><msub><mi>α</mi><mn>2</mn></msub></msub><msub><mi>c</mi><msub><mi>α</mi><mn>3</mn></msub></msub></mrow></mtd></mtr></mtable></mrow></mfenced><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p> <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>α</mi><mn>1</mn></msub><mo>,</mo><msub><mi>α</mi><mn>2</mn></msub><mo>,</mo><msub><mi>α</mi><mn>3</mn></msub></mrow></math> </ephtml> being the three mixing angles, and we use the short-hand notation <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>s</mi><mi>x</mi></msub><mo>=</mo><mo>sin</mo><mi>x</mi></mrow></math> </ephtml> , <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>c</mi><mi>x</mi></msub><mo>=</mo><mo>cos</mo><mi>x</mi></mrow></math> </ephtml> . The singlet admixture of each physical state can be computed as <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi mathvariant="normal">Σ</mi><msub><mi>h</mi><mi>i</mi></msub></msub><mo>=</mo><msup><mrow><mo stretchy="false">|</mo><msub><mi>R</mi><mrow><mi>i</mi><mn>3</mn></mrow></msub><mo stretchy="false">|</mo></mrow><mn>2</mn></msup><mo>,</mo><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></math> </ephtml> . The couplings of the Higgs bosons to SM particles are modified w.r.t. the SM Higgs-coupling predictions due to the mixing in the Higgs sector. It is convenient to express the couplings of the scalar mass eigenstates <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>i</mi></msub></math> </ephtml> normalized to the corresponding SM couplings. We therefore introduce the coupling coefficients <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>c</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mi>V</mi><mi>V</mi></mrow></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>c</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mi>f</mi><mover accent="true"><mrow><mi>f</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math> </ephtml> , such that the couplings to the massive vector bosons are given by</p> <p>2.6 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd /><mtd columnalign="left"><mrow><msub><mfenced close=")" open="(" separators=""><msub><mi>g</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mi>W</mi><mi>W</mi></mrow></msub></mfenced><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><mo>=</mo><mi mathvariant="normal">i</mi><msub><mi>g</mi><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><mfenced close=")" open="(" separators=""><msub><mi>c</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mi>V</mi><mi>V</mi></mrow></msub></mfenced><mi>g</mi><msub><mi>M</mi><mi>W</mi></msub><mspace width="1em" /><mtext>and</mtext><mspace width="0.333333em" /><mspace width="1em" /></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mspace width="2em" /><msub><mfenced close=")" open="(" separators=""><msub><mi>g</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mi>Z</mi><mi>Z</mi></mrow></msub></mfenced><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><mo>=</mo><mi mathvariant="normal">i</mi><msub><mi>g</mi><mrow><mi>μ</mi><mi>ν</mi></mrow></msub><mfenced close=")" open="(" separators=""><msub><mi>c</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mi>V</mi><mi>V</mi></mrow></msub></mfenced><mfrac><mrow><mi>g</mi><msub><mi>M</mi><mi>Z</mi></msub></mrow><msub><mi>c</mi><mi mathvariant="normal">w</mi></msub></mfrac><mspace width="0.166667em" /><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>where <emph>g</emph> is the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>S</mi><mi>U</mi><msub><mrow><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo></mrow><mi>L</mi></msub></mrow></math> </ephtml> gauge coupling, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>c</mi><mi mathvariant="normal">w</mi></msub></math> </ephtml> the cosine of weak mixing angle, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>c</mi><mi mathvariant="normal">w</mi></msub><mo>=</mo><msub><mi>M</mi><mi>W</mi></msub><mo stretchy="false">/</mo><msub><mi>M</mi><mi>Z</mi></msub><mo>,</mo><msub><mi>s</mi><mi mathvariant="normal">w</mi></msub><mo>=</mo><msqrt><mrow><mn>1</mn><mo>-</mo><msubsup><mi>c</mi><mrow><mi mathvariant="normal">w</mi></mrow><mn>2</mn></msubsup></mrow></msqrt></mrow></math> </ephtml> , and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mi>W</mi></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><mi>Z</mi></msub></math> </ephtml> the masses of the <emph>W</emph> boson and the <emph>Z</emph> boson, respectively. The couplings of the Higgs bosons to the SM fermions are given by</p> <p>2.7 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>g</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mi>f</mi><mover accent="true"><mrow><mi>f</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>=</mo><mfrac><mrow><msqrt><mn>2</mn></msqrt><mspace width="0.166667em" /><msub><mi>m</mi><mi>f</mi></msub></mrow><mi>v</mi></mfrac><mfenced close=")" open="(" separators=""><msub><mi>c</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mi>f</mi><mover accent="true"><mrow><mi>f</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></mfenced><mspace width="0.277778em" /><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mi>f</mi></msub></math> </ephtml> is the mass of the fermion and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>v</mi><mo>=</mo><msqrt><mrow><mo stretchy="false">(</mo><msubsup><mi>v</mi><mn>1</mn><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>v</mi><mn>2</mn><mn>2</mn></msubsup><mo stretchy="false">)</mo></mrow></msqrt></mrow></math> </ephtml> is the SM vev. In Table 2 we list the coupling coefficients for the couplings to gauge bosons <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>V</mi><mo>=</mo><mi>W</mi><mo>,</mo><mi>Z</mi></mrow></math> </ephtml> for the three <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even Higgses. They are identical in all four types of the (N)2HDM. The ones for the couplings to the fermions are listed in Table 3 for the four types of the N2HDM. One can observe in Table 3 that the coupling pattern of the Yukawa sector in N2HDM is the same as that of 2HDM.</p> <p>The coupling factors of the neutral <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even Higgs bosons <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>i</mi></msub></math> </ephtml> to the massive gauge bosons <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>V</mi><mo>=</mo><mi>W</mi><mo>,</mo><mi>Z</mi></mrow></math> </ephtml> in the N2HDM</p> <p> <ephtml> <table frame="hsides" rules="groups"><thead><tr><th align="left" /><th align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><msub><mi>c</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mi>V</mi><mi>V</mi></mrow></msub><mo>=</mo><msub><mi>c</mi><mi>β</mi></msub><msub><mi>R</mi><mrow><mi>i</mi><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>s</mi><mi>β</mi></msub><msub><mi>R</mi><mrow><mi>i</mi><mn>2</mn></mrow></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq119.gif" /></p></th></tr></thead><tbody><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>h</mi><mn>1</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq120.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><msub><mi>c</mi><msub><mi>α</mi><mn>2</mn></msub></msub><msub><mi>c</mi><mrow><mi>β</mi><mo>-</mo><msub><mi>α</mi><mn>1</mn></msub></mrow></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq121.gif" /></p></td></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>h</mi><mn>2</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq122.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mo>-</mo><msub><mi>c</mi><mrow><mi>β</mi><mo>-</mo><msub><mi>α</mi><mn>1</mn></msub></mrow></msub><msub><mi>s</mi><msub><mi>α</mi><mn>2</mn></msub></msub><msub><mi>s</mi><msub><mi>α</mi><mn>3</mn></msub></msub><mo>+</mo><msub><mi>c</mi><msub><mi>α</mi><mn>3</mn></msub></msub><msub><mi>s</mi><mrow><mi>β</mi><mo>-</mo><msub><mi>α</mi><mn>1</mn></msub></mrow></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq123.gif" /></p></td></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>h</mi><mn>3</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq124.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mo>-</mo><msub><mi>c</mi><msub><mi>α</mi><mn>3</mn></msub></msub><msub><mi>c</mi><mrow><mi>β</mi><mo>-</mo><msub><mi>α</mi><mn>1</mn></msub></mrow></msub><msub><mi>s</mi><msub><mi>α</mi><mn>2</mn></msub></msub><mo>-</mo><msub><mi>s</mi><msub><mi>α</mi><mn>3</mn></msub></msub><msub><mi>s</mi><mrow><mi>β</mi><mo>-</mo><msub><mi>α</mi><mn>1</mn></msub></mrow></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq125.gif" /></p></td></tr></tbody></table> </ephtml> </p> <p>Coupling factors of the Yukawa couplings of the N2HDM Higgs bosons <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mi>i</mi></msub></math> </ephtml> w.r.t. their SM values</p> <p> <ephtml> <table frame="hsides" rules="groups"><thead><tr><th align="left" /><th align="left"><p><italic>u</italic>-type (<math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>c</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mi>t</mi><mover accent="true"><mrow><mi>t</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math><inline-graphic href="10052_2019_7561_Article_IEq127.gif" />)</p></th><th align="left"><p><italic>d</italic>-type (<math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>c</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math><inline-graphic href="10052_2019_7561_Article_IEq128.gif" />)</p></th><th align="left"><p>Leptons (<math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>c</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mi>τ</mi><mover accent="true"><mrow><mi>τ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math><inline-graphic href="10052_2019_7561_Article_IEq129.gif" />)</p></th></tr></thead><tbody><tr><td align="left"><p>Type I</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><msub><mi>R</mi><mrow><mi>i</mi><mn>2</mn></mrow></msub><mo stretchy="false">/</mo><msub><mi>s</mi><mi>β</mi></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq130.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><msub><mi>R</mi><mrow><mi>i</mi><mn>2</mn></mrow></msub><mo stretchy="false">/</mo><msub><mi>s</mi><mi>β</mi></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq131.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><msub><mi>R</mi><mrow><mi>i</mi><mn>2</mn></mrow></msub><mo stretchy="false">/</mo><msub><mi>s</mi><mi>β</mi></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq132.gif" /></p></td></tr><tr><td align="left"><p>Type II</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><msub><mi>R</mi><mrow><mi>i</mi><mn>2</mn></mrow></msub><mo stretchy="false">/</mo><msub><mi>s</mi><mi>β</mi></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq133.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><msub><mi>R</mi><mrow><mi>i</mi><mn>1</mn></mrow></msub><mo stretchy="false">/</mo><msub><mi>c</mi><mi>β</mi></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq134.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><msub><mi>R</mi><mrow><mi>i</mi><mn>1</mn></mrow></msub><mo stretchy="false">/</mo><msub><mi>c</mi><mi>β</mi></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq135.gif" /></p></td></tr><tr><td align="left"><p>Type III (lepton-specific)</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><msub><mi>R</mi><mrow><mi>i</mi><mn>2</mn></mrow></msub><mo stretchy="false">/</mo><msub><mi>s</mi><mi>β</mi></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq136.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><msub><mi>R</mi><mrow><mi>i</mi><mn>2</mn></mrow></msub><mo stretchy="false">/</mo><msub><mi>s</mi><mi>β</mi></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq137.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><msub><mi>R</mi><mrow><mi>i</mi><mn>1</mn></mrow></msub><mo stretchy="false">/</mo><msub><mi>c</mi><mi>β</mi></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq138.gif" /></p></td></tr><tr><td align="left"><p>Type IV (flipped)</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><msub><mi>R</mi><mrow><mi>i</mi><mn>2</mn></mrow></msub><mo stretchy="false">/</mo><msub><mi>s</mi><mi>β</mi></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq139.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><msub><mi>R</mi><mrow><mi>i</mi><mn>1</mn></mrow></msub><mo stretchy="false">/</mo><msub><mi>c</mi><mi>β</mi></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq140.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><msub><mi>R</mi><mrow><mi>i</mi><mn>2</mn></mrow></msub><mo stretchy="false">/</mo><msub><mi>s</mi><mi>β</mi></msub></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq141.gif" /></p></td></tr></tbody></table> </ephtml> </p> <p>From Eq. (2.1), one can see that there are altogether 12 independent parameters in the model,</p> <p>2.8 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mi>m</mi><mrow><mn>11</mn></mrow><mn>2</mn></msubsup><mo>,</mo><mspace width="1em" /><msubsup><mi>m</mi><mrow><mn>22</mn></mrow><mn>2</mn></msubsup><mo>,</mo><mspace width="1em" /><msubsup><mi>m</mi><mrow><mn>12</mn></mrow><mn>2</mn></msubsup><mo>,</mo><mspace width="1em" /><msubsup><mi>m</mi><mrow><mi>S</mi></mrow><mn>2</mn></msubsup><mo>,</mo><mspace width="1em" /><msub><mi>λ</mi><mrow><mi>i</mi><mo>,</mo><mspace width="3.33333pt" /><mspace width="3.33333pt" /><mi>i</mi><mo>=</mo><mn>1</mn><mo>,</mo><mn>8</mn></mrow></msub><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>However, one can use the three minimization conditions of the potential at the vacuum to substitute the bilinears <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>m</mi><mrow><mn>11</mn></mrow><mn>2</mn></msubsup></math> </ephtml> , <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>m</mi><mrow><mn>22</mn></mrow><mn>2</mn></msubsup></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>m</mi><mrow><mi>S</mi></mrow><mn>2</mn></msubsup></math> </ephtml> for <emph>v</emph>, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>v</mi><mi>S</mi></msub></math> </ephtml> . Furthermore, the quartic couplings <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mi>i</mi></msub></math> </ephtml> can be replaced by the physical scalar masses and mixing angles, leading to the following parameter set [[<reflink idref="bib44" id="ref41">44</reflink>]];</p> <p>2.9 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>α</mi><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></msub><mo>,</mo><mspace width="1em" /><mo>tan</mo><mi>β</mi><mo>,</mo><mspace width="1em" /><mi>v</mi><mo>,</mo><mspace width="1em" /><msub><mi>v</mi><mi>S</mi></msub><mo>,</mo><mspace width="1em" /><msub><mi>m</mi><msub><mi>h</mi><mrow><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>3</mn></mrow></msub></msub><mo>,</mo><mspace width="1em" /><msub><mi>m</mi><mi>A</mi></msub><mo>,</mo><mspace width="1em" /><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub><mo>,</mo><mspace width="1em" /><msubsup><mi>m</mi><mrow><mn>12</mn></mrow><mn>2</mn></msubsup><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mi>A</mi></msub></math> </ephtml> , <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> denote the masses of the physical <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -odd and charged Higgs bosons respectively. We use the code ScannerS [[<reflink idref="bib44" id="ref42">44</reflink>]] in our analysis to uniformly explore the set of independent parameters as given in Eq. (2.9) (see below).</p> <p>In our analysis we will identify the lightest <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even Higgs boson, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> , with the one being potentially responsible for the signal at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>96</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> . The second lightest <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even Higgs boson will be identified with the one observed at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>125</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> .</p> <hd id="AN0141768308-4">Relevant constraints</hd> <p>In this section we will describe the various theoretical and experimental constraints considered in our scans. The theoretical constraints are all implemented in ScannerS. For more details, we refer the reader to the corresponding references given below. The experimental constraints implemented in ScannerS were supplemented with the most recent ones by linking the parameter points from ScannerS to the more recent versions of other public codes, which we will also describe in more detail in the following.</p> <hd id="AN0141768308-5">Theoretical constraints</hd> <p>Like all models with extended scalar sectors, the N2HDM also faces important constraints coming from tree-level perturbative unitarity, stability of the vacuum and the condition that the vacuum should be a global minimum of the potential. We briefly describe these constraints below.</p> <p></p> <ulist> <item> Tree-level perturbative unitarity conditions ensure that the potential remains perturbative up to very high energy scales. This is achieved by demanding that the amplitudes of the scalar quartic interactions leading to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mo stretchy="false">→</mo><mn>2</mn></mrow></math> </ephtml> scattering processes remain below the value of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>8</mn><mi>π</mi></mrow></math> </ephtml> at tree-level. The calculation was carried out in Ref. [[<reflink idref="bib44" id="ref43">44</reflink>]] and is implemented in ScannerS.</item> <p></p> <item> Boundedness from below demands that the potential remains positive when the field values approach infinity. ScannerS automatically ensures that the N2HDM potential is bounded from below by verifying that the necessary and sufficient conditions as given in Ref. [[<reflink idref="bib46" id="ref44">46</reflink>]] are fulfilled. The same conditions can be found in Ref. [[<reflink idref="bib44" id="ref45">44</reflink>]] in the notation adopted in this paper.</item> <p></p> <item> Following the procedure of ScannerS, we impose the condition that the vacuum should be a global minimum of the potential. Although this condition can be avoided in the case of a metastable vacuum with the tunneling time to the real minimum being larger than the age of the universe, we do not explore this possibility in this analysis. Details on the algorithm implemented in ScannerS to find the global minimum of the potential can be found in Ref. [[<reflink idref="bib45" id="ref46">45</reflink>]]. This algorithm has the advantage that it works with the scalar masses and vevs as independent set of parameters, which can be directly related to physical observables. It also finds the global minimum of the potential without having to solve coupled non-linear equations, therefore avoiding the usually numerically most expensive task in solving the stationary conditions.[<reflink idref="bib1" id="ref47">1</reflink>]</item> </ulist> <hd id="AN0141768308-6">Constraints from direct searches at colliders</hd> <p>Searches for charged Higgs bosons at the LHC are very effective constraining the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> - <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> plane of 2HDMs [[<reflink idref="bib48" id="ref48">48</reflink>]]. Since the charged scalar sector of the 2HDM is identical to that of the N2HDM, the bounds on the parameter space of the former also cover the corresponding parameter space of the latter. Important searches in our context are the direct charged Higgs production <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>p</mi><mi>p</mi><mo stretchy="false">→</mo><msup><mi>H</mi><mo>±</mo></msup><mi>t</mi><mi>b</mi></mrow></math> </ephtml> with the decay modes <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>H</mi><mo>±</mo></msup><mo stretchy="false">→</mo><mi>τ</mi><mi>ν</mi></mrow></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>H</mi><mo>±</mo></msup><mo stretchy="false">→</mo><mi>t</mi><mi>b</mi></mrow></math> </ephtml> [[<reflink idref="bib49" id="ref49">49</reflink>]]. The <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>95</mn><mo>%</mo></mrow></math> </ephtml> confidence level exclusion limits of all important searches for charged Higgs bosons are included in the public code HiggsBounds v.5.3.2 [[<reflink idref="bib50" id="ref50">50</reflink>]–[<reflink idref="bib54" id="ref51">54</reflink>]]. The theoretical cross section predictions for the production of the charged Higgs at the LHC are provided by the LHC Higgs Cross Section Working Group [[<reflink idref="bib55" id="ref52">55</reflink>]–[<reflink idref="bib58" id="ref53">58</reflink>]].[<reflink idref="bib2" id="ref54">2</reflink>] The rejected parameter points are concentrated in the region <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi><mo><</mo><mn>1</mn></mrow></math> </ephtml> , where the coupling of the charged Higgs to top quarks is enhanced [[<reflink idref="bib49" id="ref55">49</reflink>]]. Bounds from searches for charged Higgs bosons at LEP [[<reflink idref="bib59" id="ref56">59</reflink>]–[<reflink idref="bib65" id="ref57">65</reflink>]] are irrelevant for our analysis, because constrains from flavor physics observables usually exclude very light <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>H</mi><mo>±</mo></msup></math> </ephtml> kinematically in the reach of LEP.</p> <p>Direct searches for additional neutral Higgs bosons can exclude some of the parameter points, mainly when the heavy Higgs boson <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>3</mn></msub></math> </ephtml> or the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -odd Higgs boson <emph>A</emph> are rather light. HiggsBounds includes all relevant LHC searches for additional Higgs bosons, such as possible decays of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>3</mn></msub></math> </ephtml> and <emph>A</emph> to the singlet-like state <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> or the SM-like Higgs boson <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>2</mn></msub></math> </ephtml> . The most relevant channels are the following: CMS searched for pseudoscalars decaying into a <emph>Z</emph>-boson and scalar in final states with two <emph>b</emph>-jets and two leptons, where the scalar lies in the mass range of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>125</mn><mo>±</mo><mn>10</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> [[<reflink idref="bib66" id="ref58">66</reflink>]]. Both ATLAS and CMS searched for additional heavy Higgs bosons in the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>H</mi><mo stretchy="false">→</mo><mi>Z</mi><mi>Z</mi></mrow></math> </ephtml> decay channel including different final states [[<reflink idref="bib68" id="ref59">68</reflink>]–[<reflink idref="bib70" id="ref60">70</reflink>]]. For the flipped scenario, apart from the searches just mentioned, also the search for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even and -odd scalars decaying into a <emph>Z</emph>-boson and a scalar, which then decays to a pair of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> -leptons [[<reflink idref="bib71" id="ref61">71</reflink>]], is relevant, because the coupling of the light singlet-like scalar at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>96</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> -leptons can be enhanced. The constraints from the searches for an additional light neutral Higgs boson produced in gluon fusion and in association with <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></math> </ephtml> with subsequent decay into <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>τ</mi><mi>τ</mi></mrow></math> </ephtml> final state [[<reflink idref="bib14" id="ref62">14</reflink>]] has also been taken into account. Of course, the light scalar is directly constrained via the Higgsstrahlung process with subsequent decay to a pair of <emph>b</emph>-quarks or <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> -leptons at LEP [[<reflink idref="bib10" id="ref63">10</reflink>]] and by searches for diphoton resonances at the LHC including all relevant production mechanisms [[<reflink idref="bib13" id="ref64">13</reflink>], [<reflink idref="bib15" id="ref65">15</reflink>]]. However, these constraints are rather weak. In particular, the searches in the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></math> </ephtml> finale state at LEP and the diphoton final state at CMS are the ones where the excesses investigated here were seen.</p> <hd id="AN0141768308-7">Constraints from the SM-like Higgs-boson properties</hd> <p>Any model beyond the SM has to accommodate the SM-like Higgs boson, with mass and signal strengths as they were measured at the LHC [[<reflink idref="bib1" id="ref66">1</reflink>]–[<reflink idref="bib3" id="ref67">3</reflink>]]. In our scans the compatibility of the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even scalar <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>2</mn></msub></math> </ephtml> with a mass of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>125.09</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> with the measurements of signal strengths at Tevatron and LHC is checked in a twofold way.</p> <p>Firstly, the program ScannerS, that we use to generate the benchmark points, contains an individual check of the signal strengths</p> <p>3.1 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mfrac><msub><mi>μ</mi><mi>F</mi></msub><msub><mi>μ</mi><mi>V</mi></msub></mfrac><mo>,</mo><mspace width="1em" /><msubsup><mi>μ</mi><mi>F</mi><mrow><mi>γ</mi><mi>γ</mi></mrow></msubsup><mo>,</mo><mspace width="1em" /><msubsup><mi>μ</mi><mi>F</mi><mrow><mi mathvariant="italic">ZZ</mi></mrow></msubsup><mo>,</mo><mspace width="1em" /><msubsup><mi>μ</mi><mi>F</mi><mrow><mi mathvariant="italic">WW</mi></mrow></msubsup><mo>,</mo><mspace width="1em" /><msubsup><mi>μ</mi><mi>F</mi><mrow><mi>τ</mi><mi>τ</mi></mrow></msubsup><mo>,</mo><mspace width="1em" /><msubsup><mi>μ</mi><mi>F</mi><mrow><mi mathvariant="italic">bb</mi></mrow></msubsup><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>as they are quoted in Ref. [[<reflink idref="bib3" id="ref68">3</reflink>]], where an agreement within <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>±</mo><mn>2</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> is required. The signal strengths are defined as</p> <p>3.2 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mi>μ</mi><mi>F</mi><mrow><mi mathvariant="italic">xx</mi></mrow></msubsup><mo>=</mo><msub><mi>μ</mi><mi>F</mi></msub><mfrac><mrow><msub><mtext>BR</mtext><mtext>N2HDM</mtext></msub><mrow><mo stretchy="false">(</mo><msub><mi>h</mi><mi>i</mi></msub><mo stretchy="false">→</mo><mi>x</mi><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow><mrow><msub><mtext>BR</mtext><mtext>SM</mtext></msub><mrow><mo stretchy="false">(</mo><mi>H</mi><mo stretchy="false">→</mo><mi>x</mi><mi>x</mi><mo stretchy="false">)</mo></mrow></mrow></mfrac><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>Here, the production cross sections associated with couplings to fermions, normalized to the SM prediction, are defined as</p> <p>3.3 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>μ</mi><mi>F</mi></msub><mo>=</mo><mfrac><mrow><msub><mi>σ</mi><mtext>N2HDM</mtext></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="normal">g</mi><mi>g</mi><mi>F</mi><mo stretchy="false">)</mo></mrow><mo>+</mo><msub><mi>σ</mi><mtext>N2HDM</mtext></msub><mrow><mo stretchy="false">(</mo><mi>b</mi><mi>b</mi><mi>H</mi><mo stretchy="false">)</mo></mrow></mrow><mrow><msub><mi>σ</mi><mtext>SM</mtext></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="normal">g</mi><mi>g</mi><mi>F</mi><mo stretchy="false">)</mo></mrow></mrow></mfrac><mspace width="0.277778em" /><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>where the production in association with a pair of <emph>b</emph>-quarks (<emph>bbH</emph>) can be neglected in the SM, whereas in N2HDM it has to be included since it can be enhanced by <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> . The cross section for vector boson fusion (VBF) production and the associated production with a vector boson (<emph>VH</emph>) are given by the coupling coefficient <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>2</mn></msub><mi>V</mi><mi>V</mi></mrow></msub></math> </ephtml> ,</p> <p>3.4 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>μ</mi><mi>V</mi></msub><mo>=</mo><mfrac><mrow><msub><mi>σ</mi><mtext>N2HDM</mtext></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="normal">VBF</mi><mo stretchy="false">)</mo></mrow></mrow><mrow><msub><mi>σ</mi><mtext>SM</mtext></msub><mrow><mo stretchy="false">(</mo><mi mathvariant="normal">VBF</mi><mo stretchy="false">)</mo></mrow></mrow></mfrac><mo>=</mo><mfrac><mrow><msub><mi>σ</mi><mtext>N2HDM</mtext></msub><mrow><mo stretchy="false">(</mo><mi>V</mi><mi>H</mi><mo stretchy="false">)</mo></mrow></mrow><mrow><msub><mi>σ</mi><mtext>SM</mtext></msub><mrow><mo stretchy="false">(</mo><mi>V</mi><mi>H</mi><mo stretchy="false">)</mo></mrow></mrow></mfrac><mo>=</mo><msubsup><mi>c</mi><mrow><msub><mi>h</mi><mn>2</mn></msub><mi>V</mi><mi>V</mi></mrow><mn>2</mn></msubsup><mspace width="0.277778em" /><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>where we made use of the fact that QCD corrections cancel in the ratio of the vector boson fusion cross sections in the N2HDM and the SM [[<reflink idref="bib44" id="ref69">44</reflink>]]. The ggF and <emph>bbH</emph> cross sections are provided by ScannerS with the help of data tables obtained using the public code SusHi [[<reflink idref="bib72" id="ref70">72</reflink>]]. The couplings squared normalized to the SM prediction, for instance <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>c</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mi>V</mi><mi>V</mi></mrow><mn>2</mn></msubsup></math> </ephtml> , are calculated via the interface of ScannerS with the spectrum generator N2HDECAY [[<reflink idref="bib44" id="ref71">44</reflink>], [<reflink idref="bib74" id="ref72">74</reflink>]].</p> <p>In a second step, we supplemented the Higgs-boson data from Ref. [[<reflink idref="bib3" id="ref73">3</reflink>]] that is implemented in ScannerS with the most recent Higgs-boson measurements: we verify the agreement of the generated points with all currently available measurements using the public code HiggsSignals v.2.2.3 [[<reflink idref="bib76" id="ref74">76</reflink>]–[<reflink idref="bib78" id="ref75">78</reflink>]]. HiggsSignals provides a statistical <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> </ephtml> analysis of the SM-like Higgs-boson predictions of a certain model compared to the measurement of Higgs-boson signal rates and masses from Tevatron and LHC. The complete list of implemented experimental data can be found in Ref. [[<reflink idref="bib79" id="ref76">79</reflink>]]. In our scans, we will show the reduced <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> </ephtml> ,</p> <p>3.5 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mi>χ</mi><mrow><mi mathvariant="normal">red</mi></mrow><mn>2</mn></msubsup><mo>=</mo><mfrac><msup><mi>χ</mi><mn>2</mn></msup><msub><mi>n</mi><mi mathvariant="normal">obs</mi></msub></mfrac><mspace width="0.277778em" /><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> </ephtml> is provided by HiggsSignals and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>n</mi><mi mathvariant="normal">obs</mi></msub><mo>=</mo><mn>101</mn></mrow></math> </ephtml> is the number of experimental observations considered. We observe that because of the signal strength constraints already implemented in ScannerS (see Eq. (3.1)) we tend to get points with sufficiently low <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>χ</mi><mrow><mi mathvariant="normal">red</mi></mrow><mn>2</mn></msubsup></math> </ephtml> in the scan output.</p> <hd id="AN0141768308-8">Constraints from flavor physics</hd> <p>Constraints from flavor physics prove to be very significant in the N2HDM because of the presence of the charged Higgs boson. Since the charged Higgs sector of N2HDM is unaltered with respect to 2HDM, we can translate the bounds from the 2HDM parameter space directly onto our scenario for most of the observables. Various flavor observables like rare <emph>B</emph> decays, <emph>B</emph> meson mixing parameters, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtext>BR</mtext><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">→</mo><msub><mi>X</mi><mi>s</mi></msub><mi>γ</mi><mo stretchy="false">)</mo></mrow></math> </ephtml> , LEP constraints on <emph>Z</emph> decay partial widths etc., which are sensitive to charged Higgs boson exchange, provide effective constraints on the available parameter space [[<reflink idref="bib48" id="ref77">48</reflink>], [<reflink idref="bib80" id="ref78">80</reflink>]]. However, for the low <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> region that we are interested in (see below), the constraints which must be taken into account are [[<reflink idref="bib48" id="ref79">48</reflink>]]: <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtext>BR</mtext><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">→</mo><msub><mi>X</mi><mi>s</mi></msub><mi>γ</mi><mo stretchy="false">)</mo></mrow></math> </ephtml> , constraints on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="normal">Δ</mi><msub><mi>M</mi><msub><mi>B</mi><mi>s</mi></msub></msub></mrow></math> </ephtml> from neutral <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>B</mi><mo>-</mo></mrow></math> </ephtml> meson mixing and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtext>BR</mtext><mo stretchy="false">(</mo><msub><mi>B</mi><mi>s</mi></msub><mo stretchy="false">→</mo><msup><mi>μ</mi><mo>+</mo></msup><msup><mi>μ</mi><mo>-</mo></msup><mo stretchy="false">)</mo></mrow></math> </ephtml> . The dominant contributions to the former two processes come from diagrams involving <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>H</mi><mo>±</mo></msup></math> </ephtml> and top quarks (see e.g. Refs. [[<reflink idref="bib81" id="ref80">81</reflink>]–[<reflink idref="bib83" id="ref81">83</reflink>]] for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtext>BR</mtext><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">→</mo><msub><mi>X</mi><mi>s</mi></msub><mi>γ</mi><mo stretchy="false">)</mo></mrow></math> </ephtml> and Refs. [[<reflink idref="bib84" id="ref82">84</reflink>]–[<reflink idref="bib86" id="ref83">86</reflink>]] for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="normal">Δ</mi><msub><mi>M</mi><msub><mi>B</mi><mi>s</mi></msub></msub></mrow></math> </ephtml> ) and can be taken to be independent of the neutral scalar sector to a very good approximation. Thus, the bounds for them can be taken over directly from the 2HDM to our case. Since the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>H</mi><mo>±</mo></msup><mi>t</mi><mi>b</mi></mrow></math> </ephtml> coupling depends on the Yukawa sector of the model, the flavor bounds can differ for different N2HDM types [[<reflink idref="bib48" id="ref84">48</reflink>]]. Owing to identical quark Yukawa coupling patterns, limits for type I and III scenarios turn out to be very similar. The same holds for type II and IV. Constraints from <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtext>BR</mtext><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">→</mo><msub><mi>X</mi><mi>s</mi></msub><mi>γ</mi><mo stretchy="false">)</mo></mrow></math> </ephtml> exclude <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub><mo><</mo><mn>650</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> for all values of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi><mo>≳</mo><mn>1</mn></mrow></math> </ephtml> in the type II and IV 2HDM, while for type I and III the bounds are more <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi><mo>-</mo></mrow></math> </ephtml> dependent. For <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub><mo>≥</mo><mn>650</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> (as in our case) the dominant constraint is the one obtained from the measurement of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="normal">Δ</mi><msub><mi>M</mi><msub><mi>B</mi><mi>s</mi></msub></msub></mrow></math> </ephtml> .</p> <p>For still lower values of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi><mo>≲</mo><mn>1</mn></mrow></math> </ephtml> , bounds from the measurement of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtext>BR</mtext><mo stretchy="false">(</mo><msub><mi>B</mi><mi>s</mi></msub><mo stretchy="false">→</mo><msup><mi>μ</mi><mo>+</mo></msup><msup><mi>μ</mi><mo>-</mo></msup><mo stretchy="false">)</mo></mrow></math> </ephtml> become important [[<reflink idref="bib48" id="ref85">48</reflink>]]. Unlike the above two observables, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtext>BR</mtext><mo stretchy="false">(</mo><msub><mi>B</mi><mi>s</mi></msub><mo stretchy="false">→</mo><msup><mi>μ</mi><mo>+</mo></msup><msup><mi>μ</mi><mo>-</mo></msup><mo stretchy="false">)</mo></mrow></math> </ephtml> can get contributions from the neutral scalar sector of the model as well [[<reflink idref="bib87" id="ref86">87</reflink>]]. Thus, in principle the value of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtext>BR</mtext><mo stretchy="false">(</mo><msub><mi>B</mi><mi>s</mi></msub><mo stretchy="false">→</mo><msup><mi>μ</mi><mo>+</mo></msup><msup><mi>μ</mi><mo>-</mo></msup><mo stretchy="false">)</mo></mrow></math> </ephtml> in the N2HDM may differ from that of 2HDM because of additional contributions coming from <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> containing a large singlet component (see below). However, we must note that the contributions from the N2HDM <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even Higgs bosons can be expected to be small once we demand the presence of substantial singlet components in them, as it is the case in our analysis. A detailed calculation of various flavor observables in the specific case of the N2HDM is beyond the scope of this work. Furthermore, as mentioned in Sect. 3.2, in the region <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi><mo>≲</mo><mn>1</mn></mrow></math> </ephtml> , the constraints from direct LHC searches of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>H</mi><mo>±</mo></msup></math> </ephtml> already provide fairly strong constraints. Also the constraint from <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="normal">Δ</mi><msub><mi>M</mi><msub><mi>B</mi><mi>s</mi></msub></msub></mrow></math> </ephtml> covers the region of very small <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> . Keeping the above facts in mind, in our work we use the flavor bounds for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtext>BR</mtext><mo stretchy="false">(</mo><mi>B</mi><mo stretchy="false">→</mo><msub><mi>X</mi><mi>s</mi></msub><mi>γ</mi><mo stretchy="false">)</mo></mrow></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="normal">Δ</mi><msub><mi>M</mi><msub><mi>B</mi><mi>s</mi></msub></msub></mrow></math> </ephtml> as obtained in Ref. [[<reflink idref="bib48" id="ref87">48</reflink>]] for the different types of the N2HDM.</p> <hd id="AN0141768308-9">Constraints from electroweak precision data</hd> <p>Constraints from electroweak precision observables can in a simple approximation be expressed in terms of the oblique parameters S, T and U [[<reflink idref="bib89" id="ref88">89</reflink>]]. Deviations to these parameters are significant if new physics beyond the SM enters mainly through gauge boson self-energies, as it is the case for extended Higgs sectors. ScannerS has implemented the one-loop corrections to the oblique parameters for models with an arbitrary number of Higgs doublets and singlets from Ref. [[<reflink idref="bib91" id="ref89">91</reflink>]]. This calculation is valid under the criteria that the gauge group is the SM <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>S</mi><mi>U</mi><mo stretchy="false">(</mo><mn>2</mn><mo stretchy="false">)</mo><mo>×</mo><mi>U</mi><mo stretchy="false">(</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></math> </ephtml> , and that particles beyond the SM have suppressed couplings to light SM fermions. Both conditions are fulfilled in the N2HDM. Under these assumptions, the corrections are independent of the Yukawa sector of the N2HDM, and therefore the same for all types. The corrections to the oblique parameters are very sensitive to the relative mass squared differences of the scalars. They become small when either the heavy doublet-like Higgs <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>3</mn></msub></math> </ephtml> or the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -odd scalar <emph>A</emph> have a mass close to the mass of the charged Higgs boson [[<reflink idref="bib92" id="ref90">92</reflink>]]. In 2HDMs there is a strong correlation between <emph>T</emph> and <emph>U</emph>, and <emph>T</emph> is the most sensitive of the three oblique parameters. Thus, <emph>U</emph> is much smaller in points not excluded by an extremely large value of <emph>T</emph> [[<reflink idref="bib94" id="ref91">94</reflink>]], and the contributions to <emph>U</emph> can safely be dropped. Therefore, for points to be in agreement with the experimental observation, we require that the prediction of the <emph>S</emph> and the <emph>T</emph> parameter are within the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> ellipse, corresponding to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>χ</mi><mn>2</mn></msup><mo>=</mo><mn>5.99</mn></mrow></math> </ephtml> for two degrees of freedom.</p> <hd id="AN0141768308-10">Experimental excesses</hd> <p>The main purpose of our analysis is to find a model that fits the two experimental excesses in the Higgs boson searches at CMS and LEP. As experimental input for the signal strengths we use the values</p> <p>4.1 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>μ</mi><mi mathvariant="normal">LEP</mi></msub><mo>=</mo><mn>0.117</mn><mo>±</mo><mn>0.057</mn><mspace width="1em" /><mtext>and</mtext><mspace width="1em" /><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub><mo>=</mo><mn>0.6</mn><mo>±</mo><mn>0.2</mn><mspace width="0.277778em" /><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>as quoted in Refs. [[<reflink idref="bib10" id="ref92">10</reflink>], [<reflink idref="bib16" id="ref93">16</reflink>]] and [[<reflink idref="bib13" id="ref94">13</reflink>], [<reflink idref="bib95" id="ref95">95</reflink>]].</p> <p>We evaluate the signal strengths for the excesses in the narrow width approximation. For the LEP excess this is given by,</p> <p>4.2 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>μ</mi><mi mathvariant="normal">LEP</mi></msub><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfrac><mrow><msub><mi>σ</mi><mrow><mi mathvariant="normal">N</mi><mn>2</mn><mi mathvariant="normal">HDM</mi></mrow></msub><mrow><mo stretchy="false">(</mo><msup><mi>e</mi><mo>+</mo></msup><msup><mi>e</mi><mo>-</mo></msup><mo stretchy="false">→</mo><mi>Z</mi><msub><mi>h</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow></mrow><mrow><msub><mi>σ</mi><mi mathvariant="normal">SM</mi></msub><mrow><mo stretchy="false">(</mo><msup><mi>e</mi><mo>+</mo></msup><msup><mi>e</mi><mo>-</mo></msup><mo stretchy="false">→</mo><mi>Z</mi><mi>H</mi><mo stretchy="false">)</mo></mrow></mrow></mfrac><mo>·</mo><mfrac><mrow><msub><mtext>BR</mtext><mrow><mi mathvariant="normal">N</mi><mn>2</mn><mi mathvariant="normal">HDM</mi></mrow></msub><mrow><mo stretchy="false">(</mo><msub><mi>h</mi><mn>1</mn></msub><mo stretchy="false">→</mo><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow><mrow><msub><mtext>BR</mtext><mi mathvariant="normal">SM</mi></msub><mrow><mo stretchy="false">(</mo><mi>H</mi><mo stretchy="false">→</mo><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><msup><mfenced close="|" open="|" separators=""><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>V</mi><mi>V</mi></mrow></msub></mfenced><mn>2</mn></msup><mfrac><mrow><msub><mtext>BR</mtext><mrow><mi mathvariant="normal">N</mi><mn>2</mn><mi mathvariant="normal">HDM</mi></mrow></msub><mrow><mo stretchy="false">(</mo><msub><mi>h</mi><mn>1</mn></msub><mo stretchy="false">→</mo><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow><mrow><msub><mtext>BR</mtext><mi mathvariant="normal">SM</mi></msub><mrow><mo stretchy="false">(</mo><mi>H</mi><mo stretchy="false">→</mo><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover><mo stretchy="false">)</mo></mrow></mrow></mfrac><mspace width="0.277778em" /><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>where we assume that the cross section ratio can be expressed via the coupling modifier of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> to vector bosons normalized to the SM prediction, which is provided by N2HDECAY. Also the branching ratio of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> into two photons is provided by N2HDECAY. For the CMS signal strength one finds,</p> <p>4.3 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><mfrac><mrow><msub><mi>σ</mi><mrow><mi mathvariant="normal">N</mi><mn>2</mn><mi mathvariant="normal">HDM</mi></mrow></msub><mrow><mo stretchy="false">(</mo><mi>g</mi><mi>g</mi><mo stretchy="false">→</mo><msub><mi>h</mi><mn>1</mn></msub><mo stretchy="false">)</mo></mrow></mrow><mrow><msub><mi>σ</mi><mi mathvariant="normal">SM</mi></msub><mrow><mrow><mo stretchy="false">(</mo><mi>g</mi><mi>g</mi><mo stretchy="false">→</mo><mi>H</mi><mo stretchy="false">)</mo></mrow><mo stretchy="false">)</mo></mrow></mrow></mfrac><mo>·</mo><mfrac><mrow><msub><mtext>BR</mtext><mrow><mi mathvariant="normal">N</mi><mn>2</mn><mi mathvariant="normal">HDM</mi></mrow></msub><mrow><mo stretchy="false">(</mo><msub><mi>h</mi><mn>1</mn></msub><mo stretchy="false">→</mo><mi>γ</mi><mi>γ</mi><mo stretchy="false">)</mo></mrow></mrow><mrow><msub><mtext>BR</mtext><mi mathvariant="normal">SM</mi></msub><mrow><mo stretchy="false">(</mo><mi>H</mi><mo stretchy="false">→</mo><mi>γ</mi><mi>γ</mi><mo stretchy="false">)</mo></mrow></mrow></mfrac></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow><mrow /><mo>=</mo></mrow></mtd><mtd columnalign="left"><mrow><mrow /><msup><mfenced close="|" open="|" separators=""><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>t</mi><mover accent="true"><mrow><mi>t</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></mfenced><mn>2</mn></msup><mfrac><mrow><msub><mtext>BR</mtext><mrow><mi mathvariant="normal">N</mi><mn>2</mn><mi mathvariant="normal">HDM</mi></mrow></msub><mrow><mo stretchy="false">(</mo><msub><mi>h</mi><mn>1</mn></msub><mo stretchy="false">→</mo><mi>γ</mi><mi>γ</mi><mo stretchy="false">)</mo></mrow></mrow><mrow><msub><mtext>BR</mtext><mi mathvariant="normal">SM</mi></msub><mrow><mo stretchy="false">(</mo><mi>H</mi><mo stretchy="false">→</mo><mi>γ</mi><mi>γ</mi><mo stretchy="false">)</mo></mrow></mrow></mfrac><mspace width="0.277778em" /><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>The SM predictions for the branching ratios and the cross section via ggF can be found in Ref. [[<reflink idref="bib96" id="ref96">96</reflink>]]. We checked that the approximation of the cross section ratio in Eq. (4.3) with <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>t</mi><mover accent="true"><mrow><mi>t</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><msup><mrow><mo stretchy="false">|</mo></mrow><mn>2</mn></msup></mrow></math> </ephtml> is accurate to the percent-level by comparing with the result for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub></math> </ephtml> evaluated with the ggF cross section provided by ScannerS. Both approaches give equivalent results considering the experimental uncertainty in <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub></math> </ephtml> .</p> <p>Conditions that have to be satisfied to accommodate the LEP and CMS excesses simultaneously with a light <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even scalar <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> with dominant singlet component. In brackets we state the relevant coupling coefficients <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>f</mi><mover accent="true"><mrow><mi>f</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math> </ephtml> for the conditions for each type</p> <p> <ephtml> <table frame="hsides" rules="groups"><thead><tr><th align="left" /><th align="left"><p>Decrease <math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math><inline-graphic href="10052_2019_7561_Article_IEq234.gif" /></p></th><th align="left"><p>No decrease <math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>t</mi><mover accent="true"><mrow><mi>t</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math><inline-graphic href="10052_2019_7561_Article_IEq235.gif" /></p></th><th align="left"><p>No enhancement <math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>τ</mi><mover accent="true"><mrow><mi>τ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math><inline-graphic href="10052_2019_7561_Article_IEq236.gif" /></p></th></tr></thead><tbody><tr><td align="left"><p>Type I</p></td><td align="left"><p>✓<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mspace width="0.277778em" /><mo stretchy="false">(</mo><mfrac><msub><mi>R</mi><mn>12</mn></msub><msub><mi>s</mi><mi>β</mi></msub></mfrac><mo stretchy="false">)</mo></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq237.gif" /></p></td><td align="left"><p>✗<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mspace width="0.277778em" /><mo stretchy="false">(</mo><mfrac><msub><mi>R</mi><mn>12</mn></msub><msub><mi>s</mi><mi>β</mi></msub></mfrac><mo stretchy="false">)</mo></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq238.gif" /></p></td><td align="left"><p>✓<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mspace width="0.277778em" /><mo stretchy="false">(</mo><mfrac><msub><mi>R</mi><mn>12</mn></msub><msub><mi>s</mi><mi>β</mi></msub></mfrac><mo stretchy="false">)</mo></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq239.gif" /></p></td></tr><tr><td align="left"><p>Type II</p></td><td align="left"><p>✓<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mspace width="0.277778em" /><mo stretchy="false">(</mo><mfrac><msub><mi>R</mi><mn>11</mn></msub><msub><mi>c</mi><mi>β</mi></msub></mfrac><mo stretchy="false">)</mo></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq240.gif" /></p></td><td align="left"><p>✓<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mspace width="0.277778em" /><mo stretchy="false">(</mo><mfrac><msub><mi>R</mi><mn>12</mn></msub><msub><mi>s</mi><mi>β</mi></msub></mfrac><mo stretchy="false">)</mo></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq241.gif" /></p></td><td align="left"><p>✓<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mspace width="0.277778em" /><mo stretchy="false">(</mo><mfrac><msub><mi>R</mi><mn>11</mn></msub><msub><mi>c</mi><mi>β</mi></msub></mfrac><mo stretchy="false">)</mo></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq242.gif" /></p></td></tr><tr><td align="left"><p>Lepton-specific</p></td><td align="left"><p>✓<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mspace width="0.277778em" /><mo stretchy="false">(</mo><mfrac><msub><mi>R</mi><mn>12</mn></msub><msub><mi>s</mi><mi>β</mi></msub></mfrac><mo stretchy="false">)</mo></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq243.gif" /></p></td><td align="left"><p>✗<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mspace width="0.277778em" /><mo stretchy="false">(</mo><mfrac><msub><mi>R</mi><mn>12</mn></msub><msub><mi>s</mi><mi>β</mi></msub></mfrac><mo stretchy="false">)</mo></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq244.gif" /></p></td><td align="left"><p>✗<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mspace width="0.277778em" /><mo stretchy="false">(</mo><mfrac><msub><mi>R</mi><mn>11</mn></msub><msub><mi>c</mi><mi>β</mi></msub></mfrac><mo stretchy="false">)</mo></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq245.gif" /></p></td></tr><tr><td align="left"><p>Flipped</p></td><td align="left"><p>✓<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mspace width="0.277778em" /><mo stretchy="false">(</mo><mfrac><msub><mi>R</mi><mn>11</mn></msub><msub><mi>c</mi><mi>β</mi></msub></mfrac><mo stretchy="false">)</mo></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq246.gif" /></p></td><td align="left"><p>✓<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mspace width="0.277778em" /><mo stretchy="false">(</mo><mfrac><msub><mi>R</mi><mn>12</mn></msub><msub><mi>s</mi><mi>β</mi></msub></mfrac><mo stretchy="false">)</mo></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq247.gif" /></p></td><td align="left"><p>✗<math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mspace width="0.277778em" /><mo stretchy="false">(</mo><mfrac><msub><mi>R</mi><mn>12</mn></msub><msub><mi>s</mi><mi>β</mi></msub></mfrac><mo stretchy="false">)</mo></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq248.gif" /></p></td></tr></tbody></table> </ephtml> </p> <p>As can be seen from Eqs. (4.1)–(4.3), the CMS excess points towards the existence of a scalar with a SM-like production rate, whereas the LEP excess demands that the scalar should have a squared coupling to massive vector bosons of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>≳</mo><mn>0.1</mn></mrow></math> </ephtml> times that of the SM Higgs boson of the same mass. This suppression of the coupling coefficient <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>V</mi><mi>V</mi></mrow></msub></math> </ephtml> is naturally fulfilled for a singlet-like state, that acquires its interaction to SM particles via a considerable mixing with the SM-like Higgs boson, thus motivating the explanation of the LEP excess with the real singlet of the N2HDM. For the CMS excess, on the other hand, it appears to be difficult at first sight to accommodate the large signal strength, because one expects a suppression of the loop-induced coupling to photons of the same order as the one of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>V</mi><mi>V</mi></mrow></msub></math> </ephtml> , since in the SM the Higgs-boson decay to photons is dominated by the <emph>W</emph> boson loop. However, it turns out that it is possible to overcompensate the suppression of the loop-induced coupling to photons by decreasing the total width of the singlet-like scalar, leading to an enhancement of the branching ratio of the new scalar to the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>γ</mi><mi>γ</mi></mrow></math> </ephtml> final state. In principle, the branching ratio to diphotons can be further increased w.r.t. the SM by contributions stemming from diagrams with the charged Higgs boson in the loop. (In our scans, however, these contributions are of minor significance due to the high lower limit on the charged Higgs mass of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>650</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> from <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtext>BR</mtext><mo stretchy="false">(</mo><msub><mi>B</mi><mi>s</mi></msub><mo stretchy="false">→</mo><msub><mi>X</mi><mi>s</mi></msub><mi>γ</mi><mo stretchy="false">)</mo></mrow></math> </ephtml> constraints.) The different types of N2HDM behave differently in this regard, based on how the doublet fields are coupled to the quarks and leptons. We summarize the general idea in Table 4 and argue that only the type II and type IV (flipped) N2HDM can accommodate both excesses simultaneously using a dominantly singlet-like scalar <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>96</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> .</p> <p>The first condition is that the coupling of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> to <emph>b</emph>-quarks has to be suppressed to enhance the decay rate to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>γ</mi><mi>γ</mi></mrow></math> </ephtml> , as the total decay width at this mass is still dominated by the decay to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></math> </ephtml> . As a second condition, at the same time one should not decrease the coupling to <emph>t</emph>-quarks too much, because the decay width to photons strongly depends on the top quark loop contribution (interfering constructively with the charged Higgs-boson contribution). Moreover, the ggF production cross section is dominated at leading order by the diagram with <emph>t</emph>-quarks in the loop. Thus, a decreased coupling of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> to <emph>t</emph>-quarks implies a lower production cross section at the LHC. As one can deduce from Table 4, in type I and the lepton-specific N2HDM, the coupling coefficients are the same for up- and down-type quarks. Thus, it is impossible to satisfy both of the above criteria simultaneously in these models. Consequently, they fail to accommodate both the CMS and the LEP excesses.</p> <p>One could of course go to the 2HDM-limit of the N2HDM by taking the singlet scalar to be decoupled, and reproduce the results observed previously in Refs. [[<reflink idref="bib21" id="ref97">21</reflink>]], in which both excesses are accommodated placing the second <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even Higgs boson in the corresponding mass range. In the limit of the type I 2HDM, the parameter space favorable for the two excesses would correspond to very small values of coupling of the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>96</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> state to up-type quarks, because the dominant component of the scalar comes from the down-type doublet field. This implies that the ggF production mode no longer dominates the total production cross section and the excesses can only be explained by considering the contributions from other modes of production like vector boson fusion and associated production with vector bosons etc. The results for the lepton-specific 2HDM follow closely the ones for type I because of similar coupling structures in the two models. In the CMS analysis [[<reflink idref="bib13" id="ref98">13</reflink>]], however, the excess appears clearly in the ggF production mode. Consequently, we discard these two versions of the N2HDM, as they cannot provide a sufficiently large ggF cross section, while yielding an adequate decay rate to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>γ</mi><mi>γ</mi></mrow></math> </ephtml> simultaneously.</p> <p>Having discarded the type I and type III scenario, we now concentrate on the remaining two possibilities. In type II and the flipped type IV scenario, each of the doublet fields <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">Φ</mi><mn>1</mn></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">Φ</mi><mn>2</mn></msub></math> </ephtml> couple to either up- or down-type quarks, and it is possible to control the size of the coupling coefficients <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>c</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mi>t</mi><mover accent="true"><mrow><mi>t</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>c</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math> </ephtml> independently. Since the singlet-like scalar acquires its couplings to fermions through the mixing with the doublet fields, this effectively leads to one more degree of freedom to adjust its couplings independently for up- and down-type quarks. From the dependence of the mixing matrix elements <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>R</mi><mn>11</mn></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>R</mi><mn>12</mn></msub></math> </ephtml> on the mixings angles <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>α</mi><mi>i</mi></msub></math> </ephtml> , as stated in Eq. (2.5), one can deduce that the relevant parameter in this case is <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>α</mi><mn>1</mn></msub></math> </ephtml> . For <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mi>α</mi><mn>1</mn></msub><mrow><mo stretchy="false">|</mo><mo stretchy="false">→</mo><mi>π</mi><mo stretchy="false">/</mo><mn>2</mn></mrow></mrow></math> </ephtml> the up-type doublet component of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> is large and the down-type doublet component goes to zero. Thus, large values of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>α</mi><mn>1</mn></msub></math> </ephtml> will correspond to an enhancement of the branching ratio to photons, because the dominant decay width to <emph>b</emph>-quarks, and therefore the total width of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> , is suppressed.</p> <p>A third condition, although not as significant as the other two, is related to the coupling of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> to leptons. If it is increased, the decay to a pair of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> -leptons will be enhanced. Similar to the decay to <emph>b</emph>-quarks, it will compete with the diphoton decay and can suppress the signal strength needed for the CMS excess. The <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> -Yukawa coupling is not as large as the <emph>b</emph>-Yukawa coupling, so this condition is not as important as the other two. Still, as we will see in our numerical evaluation, it is the reason why it is easier to fit the CMS excess in the type II model compared to the flipped scenario. In the latter case, the coupling coefficient to leptons is equal to the one to up-type quarks. Thus, in the region where the diphoton decay width is large, also decay width to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> -pairs is large, and both channels will compete. In the type II scenario, on the other hand, the coupling to leptons is equal to the coupling to down-type quarks, meaning that in the relevant parameter region both the decay to <emph>b</emph>-quarks and the decay to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> -leptons are suppressed.</p> <p>In our scans we indicate the "best-fit point" referring to the point with the smallest <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> </ephtml> defined by</p> <p>4.4 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msubsup><mi>χ</mi><mrow><mrow><mi mathvariant="normal">CMS</mi><mo>-</mo><mi mathvariant="normal">LEP</mi></mrow></mrow><mn>2</mn></msubsup><mo>=</mo><mfrac><msup><mrow><mo stretchy="false">(</mo><msub><mi>μ</mi><mi mathvariant="normal">LEP</mi></msub><mo>-</mo><mn>0.117</mn><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mrow><mn>0</mn><mo>.</mo><msup><mn>057</mn><mn>2</mn></msup></mrow></mfrac><mo>+</mo><mfrac><msup><mrow><mo stretchy="false">(</mo><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub><mo>-</mo><mn>0.6</mn><mo stretchy="false">)</mo></mrow><mn>2</mn></msup><mrow><mn>0</mn><mo>.</mo><msup><mn>2</mn><mn>2</mn></msup></mrow></mfrac><mspace width="0.277778em" /><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>quantifying the quadratic deviation w.r.t. the measured values, assuming that there is no correlation between the signal strengths of the two excesses. In principle, we could have combined the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> </ephtml> obtained from HiggsSignals regarding the SM-like Higgs boson observables with the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> </ephtml> defined above regarding the LEP and the CMS excesses. In that case, however, the total <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> </ephtml> would be strongly dominated by the SM-like Higgs boson contribution from HiggsSignals due to the sheer amount of signal strength observables implemented. Consequently, we refrain from performing such a combined <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> </ephtml> analysis.</p> <hd id="AN0141768308-11">ATLAS limits</hd> <p>ATLAS published first Run II results in the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>γ</mi><mi>γ</mi></mrow></math> </ephtml> searches below 125 GeV with 80 fb <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mrow /><mrow><mo>-</mo><mn>1</mn></mrow></msup></math> </ephtml> [[<reflink idref="bib15" id="ref99">15</reflink>]]. No significant excess above the SM expectation was observed in the mass range between 65 and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>110</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> . However, the limit on cross section times branching ratio obtained in the diphoton final state by ATLAS is substantially weaker than the corresponding upper limit obtained by CMS at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>96</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> . It does not touch the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> ranges of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub></math> </ephtml> . Interestingly, the ATLAS result shows a little "shoulder" (upward "bump") around <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>96</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> . This was illustrated and discussed in Fig. 1 of Ref. [[<reflink idref="bib19" id="ref100">19</reflink>]].</p> <hd id="AN0141768308-12">Results</hd> <p>In the following we will present our analyses in the type II and type IV scenario. The scalar mass eigenstate with dominant singlet-component will be responsible for accommodating the LEP and the CMS excesses at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>95</mn></mrow></math> </ephtml> - <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>98</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> . As already mentioned above, we performed a scan over the relevant parameters using the public code ScannerS. We give the ranges of the free parameters for each type in the corresponding subsection. We will make use of the possibility to set additional constraints on the singlet admixture of each <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even scalar particle, which is provided by ScannerS. Additional constraints on the mixing angles <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>α</mi><mi>i</mi></msub></math> </ephtml> , as will be explained in the following, were implemented by us within the appropriate routines to exclude irrelevant parameter space.</p> <p>In our plots we will show the benchmark points that pass all the theoretical and experimental constraints described in Sect. 3, if not said otherwise. We will provide details on the best-fit points for both types of the N2HDM and explain relevant differences regarding the contributions to the excesses at LEP and CMS.</p> <p>Similar scans have been performed also for the N2HDM type I and III (lepton specific). We confirmed the negative result expected from the arguments given in Sect. 4. Consequently, we do not show any of these results here, but concentrate on the two models that indeed can describe the CMS and LEP excesses.</p> <p>To enforce that the lightest scalar has the dominant singlet admixture, we impose</p> <p>5.1 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><mn>65</mn><mo>%</mo><mo>≤</mo><msub><mi mathvariant="normal">Σ</mi><msub><mi>h</mi><mn>1</mn></msub></msub><mo>≤</mo><mn>90</mn><mo>%</mo><mspace width="0.277778em" /><mo>,</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>while for the SM-like Higgs boson we impose a lower limit on the singlet admixture of</p> <p>5.2 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi mathvariant="normal">Σ</mi><msub><mi>h</mi><mn>2</mn></msub></msub><mo>≥</mo><mn>10</mn><mo>%</mo><mspace width="0.277778em" /><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>This assures that there is at least some up-type doublet component in <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> in each scan point, which is necessary to fit the CMS excess. Note also that it is not helpful to attribute a substantial amount of singlet component to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>3</mn></msub></math> </ephtml> , because this would yield a sizable down-type doublet component of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> instead of an up-type doublet component, such that the ggF production and the enhancement of the diphoton branching ratio necessary for the CMS signal would not be accounted for. We have checked explicitly that this bound has no impact on the parameter space that have <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>χ</mi><mrow><mi mathvariant="normal">CMS</mi><mo>-</mo><mi mathvariant="normal">LEP</mi></mrow><mn>2</mn></msubsup><mo>≤</mo><mn>2.30</mn></mrow></math> </ephtml> (i.e. the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> range, see the discussion of Fig. 10 below).</p> <p>The conditions on the singlet admixture of the mass eigenstates can trivially be translated into bounds on the mixing angles <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>α</mi><mi>i</mi></msub></math> </ephtml> . Taking into account that we want to increase the up-type component of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> compared to its down-type component, one can deduce from the definition of the mixing matrix in Eq. (2.5) that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>α</mi><mn>1</mn></msub><mo stretchy="false">→</mo><mo>±</mo><mi>π</mi><mo stretchy="false">/</mo><mn>2</mn></mrow></math> </ephtml> is a necessary condition. In this limit the coupling coefficients of the SM-like Higgs boson <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>2</mn></msub></math> </ephtml> to quarks can be approximated by</p> <p>5.3 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>2</mn></msub><mi>t</mi><mover accent="true"><mrow><mi>t</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>∼</mo><mo>∓</mo><mfrac><mrow><msub><mi>s</mi><msub><mi>α</mi><mn>2</mn></msub></msub><msub><mi>s</mi><msub><mi>α</mi><mn>3</mn></msub></msub></mrow><msub><mi>s</mi><mi>β</mi></msub></mfrac><mspace width="1em" /><mtext>and</mtext><mspace width="1em" /><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>2</mn></msub><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo>∼</mo><mo>∓</mo><mfrac><msub><mi>c</mi><msub><mi>α</mi><mn>3</mn></msub></msub><msub><mi>c</mi><mi>β</mi></msub></mfrac><mspace width="0.277778em" /><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>Consequently, if <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>α</mi><mn>2</mn></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>α</mi><mn>3</mn></msub></math> </ephtml> would have opposite signs, one would be in the wrong-sign Yukawa coupling regime. In this regime it is harder to accommodate the SM-like Higgs boson properties, especially for low values of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> . Also the possible singlet-component of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>2</mn></msub></math> </ephtml> is more limited [[<reflink idref="bib44" id="ref101">44</reflink>]]. To avoid entering the wrong-sign Yukawa coupling regime, we therefore impose additionally</p> <p>5.4 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd columnalign="right"><mrow><msub><mi>α</mi><mn>2</mn></msub><mo>·</mo><msub><mi>α</mi><mn>3</mn></msub><mo>></mo><mn>0</mn><mspace width="0.277778em" /><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>This condition is also useful to exclude irrelevant parameter space with small values of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mi>α</mi><mn>1</mn></msub><mrow><mo stretchy="false">|</mo></mrow></mrow></math> </ephtml> following the global-minimum condition <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>λ</mi><mn>2</mn></msub><mo>></mo><mn>0</mn></mrow></math> </ephtml> , taking into account the possible values of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>α</mi><mn>2</mn></msub></math> </ephtml> defined by the condition shown in Eq. (5.1) and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi><mo>∼</mo><mn>1</mn></mrow></math> </ephtml> . In the scanned parameter regions, as specified below, the quartic coupling <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>λ</mi><mn>2</mn></msub></math> </ephtml> tends to be negative for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>α</mi><mn>2</mn></msub><mo>·</mo><msub><mi>α</mi><mn>3</mn></msub><mo><</mo><mn>0</mn></mrow></math> </ephtml> and positive for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>α</mi><mn>2</mn></msub><mo>·</mo><msub><mi>α</mi><mn>3</mn></msub><mo>></mo><mn>0</mn></mrow></math> </ephtml> in the limit <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mi>α</mi><mn>1</mn></msub><mrow><mo stretchy="false">|</mo><mo stretchy="false">→</mo><mi>π</mi><mo stretchy="false">/</mo><mn>2</mn></mrow></mrow></math> </ephtml> .</p> <hd id="AN0141768308-13">Type II</hd> <p>Following the discussion about the various experimental and theoretical constrains we chose to scan the following range of input parameters:</p> <p>5.5 <ephtml> <math display="block" xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtable><mtr><mtd /><mtd columnalign="left"><mrow><mn>95</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi><mo>≤</mo><msub><mi>m</mi><msub><mi>h</mi><mn>1</mn></msub></msub><mo>≤</mo><mn>98</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi><mo>,</mo><mspace width="1em" /><msub><mi>m</mi><msub><mi>h</mi><mn>2</mn></msub></msub><mo>=</mo><mn>125.09</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mspace width="1em" /><mn>400</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi><mo>≤</mo><msub><mi>m</mi><msub><mi>h</mi><mn>3</mn></msub></msub><mo>≤</mo><mn>1000</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mspace width="1em" /><mn>400</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi><mo>≤</mo><msub><mi>m</mi><mi>A</mi></msub><mo>≤</mo><mn>1000</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mspace width="1em" /><mn>650</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi><mo>≤</mo><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub><mo>≤</mo><mn>1000</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi><mo>,</mo><mn>0.5</mn><mo>≤</mo><mo>tan</mo><mi>β</mi><mo>≤</mo><mn>4</mn><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mspace width="1em" /><mn>0</mn><mo>≤</mo><msubsup><mi>m</mi><mrow><mn>12</mn></mrow><mn>2</mn></msubsup><mo>≤</mo><msup><mn>10</mn><mn>6</mn></msup><mspace width="0.166667em" /><mspace width="0.166667em" /><msup><mrow><mi mathvariant="normal">GeV</mi></mrow><mn>2</mn></msup><mo>,</mo></mrow></mtd></mtr><mtr><mtd columnalign="right"><mrow /></mtd><mtd columnalign="left"><mrow><mspace width="1em" /><mn>100</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi><mo>≤</mo><msub><mi>v</mi><mi>S</mi></msub><mo>≤</mo><mn>1500</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi><mo>.</mo></mrow></mtd></mtr></mtable></mrow></math> </ephtml></p> <p>Graph</p> <p>The parameter <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>m</mi><mrow><mn>12</mn></mrow><mn>2</mn></msubsup></math> </ephtml> is chosen to be positive to assure that the minimum is the global minimum of the scalar potential [[<reflink idref="bib44" id="ref102">44</reflink>]]. The lower bounds of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>400</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mi>A</mi></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><msub><mi>h</mi><mn>3</mn></msub></msub></math> </ephtml> were set to avoid very strong constraints from direct searches. We were not able to find points with <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>m</mi><mi>A</mi></msub><mo><</mo><mn>400</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> that explain the excesses at the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> level. In principle, points with <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>m</mi><msub><mi>h</mi><mn>3</mn></msub></msub><mo><</mo><mn>400</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> that explain the excesses are possible. However, we excluded such low masses to improve the performance of ScannerS, i.e., to generate a relatively larger number of points fulfilling the experimental constraints. Note that for the explanation of the excesses it is not important if <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>3</mn></msub></math> </ephtml> is light, since only the mixing of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> with the SM-like Higgs boson <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>2</mn></msub></math> </ephtml> , providing the up-type doublet component of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> , is relevant. The parameter range for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> is not only the preferred range in the N2HDM due to the theoretical constraints [[<reflink idref="bib44" id="ref103">44</reflink>]], but also the region where the excesses can be explained, as will be shown below.</p> <p>Graph: Fig. 1 Type II: the signal strengths μCMS and μLEP are shown for each scan point respecting the experimental and theoretical constrains. The 1σ-region of both excesses is shown by the red ellipse. The colors show the mass of the charged Higgs. The magenta star is the best-fit point. The lowest (highest) value of MH± inside the 1σ ellipse is 650.03(964.71)GeV</p> <p>Graph: Fig. 2 Type II: as in Fig. 1, but here the colors indicate the χred2 from HiggsSignals. The best-fit point (magenta) has χred2=1.237 with 101 observations considered. The lowest (highest) value of χred2 inside the 1σ ellipse is 0.9052 (1.3304)</p> <p>Graph: Fig. 3 Type II: as in Fig. 1, but here the colors indicate the value of tanβ. The lowest (highest) value of tanβ inside the 1σ ellipse is 0.7970 (3.748)</p> <p>Graph: Fig. 4 Allowed (green) and excluded (red) points considering direct searches (left) and flavor physics (right) in the MH±-tanβ plane. The magenta star is the best-fit point</p> <p>We show the result of our scan in Figs. 1, 2, 3 in the plane of the signal strengths <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">LEP</mi></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub></math> </ephtml> for each scan point, where the best-fit point w.r.t. the two excesses is marked by a magenta star. The upper-left boundary of the points in all these figures is caused by the condition <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>α</mi><mn>2</mn></msub><mo>·</mo><msub><mi>α</mi><mn>3</mn></msub><mo>></mo><mn>0</mn></mrow></math> </ephtml> , whereas the lower-left boundary is the result of Eq. (5.2). It should be kept in mind that the density of points has no physical meaning and is a pure artifact of the "flat prior" in our parameter scan. The red dashed line corresponds to the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> ellipse, i.e., to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msubsup><mi>χ</mi><mrow><mrow><mi mathvariant="normal">CMS</mi><mo>-</mo><mi mathvariant="normal">LEP</mi></mrow></mrow><mn>2</mn></msubsup><mo>=</mo><mn>2.30</mn></mrow></math> </ephtml> for two degrees of freedom, with <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>χ</mi><mrow><mrow><mi mathvariant="normal">CMS</mi><mo>-</mo><mi mathvariant="normal">LEP</mi></mrow></mrow><mn>2</mn></msubsup></math> </ephtml> defined in Eq. (4.4). The colors of the points indicate the value of the charged Higgs-boson mass in Fig. 1 and the reduced <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> </ephtml> (see Eq. (3.5)) from the test of the SM-like Higgs-boson properties with HiggsSignals in Fig. 2. One sees that various points fit both excesses simultaneously while also accommodating the properties of the SM-like Higgs boson at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>125</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> . We note that the value of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>χ</mi><mrow><mi mathvariant="normal">red</mi></mrow><mn>2</mn></msubsup></math> </ephtml> lies in a narrow range of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>0.9</mn></mrow></math> </ephtml> –1.3 within the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mspace width="3.33333pt" /><mi>σ</mi></mrow></math> </ephtml> ellipse. Such low values of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>χ</mi><mrow><mi mathvariant="normal">red</mi></mrow><mn>2</mn></msubsup></math> </ephtml> arise because of the built-in signal strength checks implemented in ScannerS (see Eq. (3.1)) which thus produces points with low <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>χ</mi><mrow><mi mathvariant="normal">red</mi></mrow><mn>2</mn></msubsup></math> </ephtml> . On the other hand, the lower limit on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>χ</mi><mrow><mi mathvariant="normal">red</mi></mrow><mn>2</mn></msubsup></math> </ephtml> can be attributed to the choice of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">Σ</mi><msub><mi>h</mi><mn>2</mn></msub></msub></math> </ephtml> (see Eq. (5.2)) in our scans. From Fig. 1 we can conclude that lower values for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> are preferred to fit the diphoton excess. We emphasize that the dependence of the diphoton branching ratio of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> , and therefore of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub></math> </ephtml> , on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> is caused by the negative correlation between <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mi>α</mi><mn>1</mn></msub><mrow><mo stretchy="false">|</mo></mrow></mrow></math> </ephtml> , yielding a negative correlation between <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub></math> </ephtml> , as explained in Sect. 4. One would naively expect that the diagram with the charged Higgs boson in the loop, contributing to the diphoton decay width, is responsible for the correlation between <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub></math> </ephtml> . However, this contribution has a minor impact (and thus dependence) on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub><mo>></mo><mn>650</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi><mo>≫</mo><msub><mi>m</mi><msub><mi>h</mi><mn>1</mn></msub></msub></mrow></math> </ephtml> . More important are theoretical constraints and the constraints from the oblique parameters, that induce also larger masses of the heavy Higgs <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><msub><mi>h</mi><mn>3</mn></msub></msub></math> </ephtml> and the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -odd Higgs <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mi>A</mi></msub></math> </ephtml> when <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> is large. Due to these constraints the range of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mi>α</mi><mn>1</mn></msub><mrow><mo stretchy="false">|</mo></mrow></mrow></math> </ephtml> , and thus the possible enhancement of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi>γ</mi><mi>γ</mi></mrow></msubsup></math> </ephtml> , is limited stronger with increasing <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> . Finally, we show in Fig. 3 a plot with the colors indicating the value of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> in each point. An overall tendency can be observed that values of about <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi><mo>∼</mo><mn>1</mn></mrow></math> </ephtml> are preferred in our scan, however independent of the quality of the fit to the excesses. We find a lower limit of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi><mo>∼</mo><mn>0.7</mn></mrow></math> </ephtml> caused by constraints from flavor physics (see below). The maximum value within the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> ellipse is <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi><mo>=</mo><mn>3.748</mn></mrow></math> </ephtml> , well below the chosen upper limit of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi><mo><</mo><mn>4</mn></mrow></math> </ephtml> in the scan, indicating that the relevant range of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> regarding the excesses is captured entirely.</p> <p>The preferred low values of the charged Higgs mass and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> give rise to the fact that the scenario presented here will be in reach of direct searches for charged Higgs bosons at the LHC [[<reflink idref="bib49" id="ref104">49</reflink>]] (see the discussion in Sect. 5.3.1). Already now, parts of the parameter space scanned here are excluded by direct searches. This is illustrated in Fig. 4a, where we show points allowed by HiggsBounds in green, and the excluded points in red. For values of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi><mo><</mo><mn>1</mn></mrow></math> </ephtml> direct searches are very constraining. The experimental analysis responsible for this excluded region is the search for charged Higgs bosons produced in association with a <emph>t</emph>- and a <emph>b</emph>-quark, and the subsequent decay of the charged Higgs boson to a <emph>tb</emph>-pair, performed by ATLAS [[<reflink idref="bib49" id="ref105">49</reflink>]]. Apart from that, flavor physics can provide very strict bounds in the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> - <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> plane (see the discussion in Sect. 3.4). We show the excluded regions in our scan in Fig. 4b. We see that in the region of lower values of the charged Higgs-boson mass, where the excesses are reproduced most "easily", bounds from flavor physics are as good as the direct searches for additional Higgs bosons in the low <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> region. Values of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi><mo><</mo><mn>0.7</mn></mrow></math> </ephtml> are ruled out for the whole range of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> .</p> <p>In Table 5 we show the values of the free parameters and the relevant branching ratios of the singlet-like scaler <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> , the SM-like Higgs boson <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>2</mn></msub></math> </ephtml> as well as all other (heavier) Higgs bosons of the model for the best-fit point of our scan, which is highlighted with a magenta star in Figs. 1, 2, 3, 4b. Remarkably, the branching ratio for the decay of the singlet-like scalar into photons is larger than the one of the SM-like Higgs boson. As explained in the beginning of Sect. 5 this is achieved by a value of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>α</mi><mn>1</mn></msub><mo>∼</mo><mi>π</mi><mo stretchy="false">/</mo><mn>2</mn></mrow></math> </ephtml> , which suppresses the decay to <emph>b</emph>-quarks and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> -leptons, without decreasing the coupling to <emph>t</emph>-quarks. The most important BRs for the heavy Higgs bosons are those to the heaviest quarks, <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>h</mi><mn>3</mn></msub><mo stretchy="false">→</mo><mi>t</mi><mover accent="true"><mrow><mi>t</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></math> </ephtml> , <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>A</mi><mo stretchy="false">→</mo><mi>t</mi><mover accent="true"><mrow><mi>t</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>H</mi><mo>±</mo></msup><mo stretchy="false">→</mo><mi>t</mi><mi>b</mi></mrow></math> </ephtml> , offering interesting prospects for future searches, as will be briefly discussed in Sect. 5.3. Constraints from the oblique parameters lead to a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -odd Higgs boson mass <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>m</mi><mi>A</mi></msub></math> </ephtml> close to the mass of the charged Higgs boson. We stress, however, that this is not the only possibility to fulfill the constraints from the oblique parameters. The alternative possibility that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>m</mi><msub><mi>h</mi><mn>3</mn></msub></msub><mo>∼</mo><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></mrow></math> </ephtml> occurs as often as <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>m</mi><mi>A</mi></msub><mo>∼</mo><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></mrow></math> </ephtml> in our scan. The value of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> is close to one, meaning that the benchmark point shown here might be in range of future improved constraints both from direct searches at colliders as well as from flavor physics. More optimistically speaking, deviations from the SM predictions are expected in collider experiments and flavor observables if our explanation of the LEP and CMS excesses are implemented by nature. We will discuss in Sect. 5.3 the prospects of detecting deviations from the SM-prediction, that accompany our explanation of the LEP and the CMS excess, at future colliders.</p> <p>Parameters of the best-fit point and branching ratios of the scalars in the type II scenario. Dimensionful parameters are given in GeV and the angles are given in radian</p> <p> <ephtml> <table frame="hsides" rules="groups"><thead><tr><th align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>m</mi><msub><mi>h</mi><mn>1</mn></msub></msub></math><inline-graphic href="10052_2019_7561_Article_IEq405.gif" /></p></th><th align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>m</mi><msub><mi>h</mi><mn>2</mn></msub></msub></math><inline-graphic href="10052_2019_7561_Article_IEq406.gif" /></p></th><th align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>m</mi><msub><mi>h</mi><mn>3</mn></msub></msub></math><inline-graphic href="10052_2019_7561_Article_IEq407.gif" /></p></th><th align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>m</mi><mi>A</mi></msub></math><inline-graphic href="10052_2019_7561_Article_IEq408.gif" /></p></th><th align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math><inline-graphic href="10052_2019_7561_Article_IEq409.gif" /></p></th><th align="left" /><th align="left" /></tr></thead><tbody><tr><td align="left"><p>96.5263</p></td><td align="left"><p>125.09</p></td><td align="left"><p>535.86</p></td><td align="left"><p>712.578</p></td><td align="left"><p>737.829</p></td><td align="left" /><td align="left" /></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mo>tan</mo><mi>β</mi></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq410.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>α</mi><mn>1</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq411.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>α</mi><mn>2</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq412.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>α</mi><mn>3</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq413.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>m</mi><mrow><mn>12</mn></mrow><mn>2</mn></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq414.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>v</mi><mi>S</mi></msub></math><inline-graphic href="10052_2019_7561_Article_IEq415.gif" /></p></td><td align="left" /></tr><tr><td align="left"><p>1.26287</p></td><td align="left"><p>1.26878</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mo>-</mo><mn>1.08484</mn></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq416.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mo>-</mo><mn>1.24108</mn></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq417.gif" /></p></td><td align="left"><p>80644.3</p></td><td align="left"><p>272.72</p></td><td align="left" /></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi mathvariant="italic">bb</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq418.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi mathvariant="italic">gg</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq419.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi mathvariant="italic">cc</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq420.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi>τ</mi><mi>τ</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq421.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi>γ</mi><mi>γ</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq422.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi mathvariant="italic">WW</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq423.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi mathvariant="italic">ZZ</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq424.gif" /></p></td></tr><tr><td align="left"><p>0.5048</p></td><td align="left"><p>0.2682</p></td><td align="left"><p>0.1577</p></td><td align="left"><p>0.0509</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>2.582</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq425.gif" /></p></td><td align="left"><p>0.0137</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>1.753</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq426.gif" /></p></td></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>2</mn></msub><mrow><mi mathvariant="italic">bb</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq427.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>2</mn></msub><mrow><mi mathvariant="italic">gg</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq428.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>2</mn></msub><mrow><mi mathvariant="italic">cc</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq429.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>2</mn></msub><mrow><mi>τ</mi><mi>τ</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq430.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>2</mn></msub><mrow><mi>γ</mi><mi>γ</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq431.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>2</mn></msub><mrow><mi mathvariant="italic">WW</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq432.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>2</mn></msub><mrow><mi mathvariant="italic">ZZ</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq433.gif" /></p></td></tr><tr><td align="left"><p>0.5916</p></td><td align="left"><p>0.0771</p></td><td align="left"><p>0.0288</p></td><td align="left"><p>0.0636</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>2.153</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq434.gif" /></p></td><td align="left"><p>0.2087</p></td><td align="left"><p>0.0261</p></td></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>3</mn></msub><mrow><mi mathvariant="italic">tt</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq435.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>3</mn></msub><mrow><mi mathvariant="italic">gg</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq436.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>3</mn></msub><mrow><msub><mi>h</mi><mn>1</mn></msub><msub><mi>h</mi><mn>1</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq437.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>3</mn></msub><mrow><msub><mi>h</mi><mn>1</mn></msub><msub><mi>h</mi><mn>2</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq438.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>3</mn></msub><mrow><msub><mi>h</mi><mn>2</mn></msub><msub><mi>h</mi><mn>2</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq439.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>3</mn></msub><mrow><mi mathvariant="italic">WW</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq440.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>3</mn></msub><mrow><mi mathvariant="italic">ZZ</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq441.gif" /></p></td></tr><tr><td align="left"><p>0.8788</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>2.537</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq442.gif" /></p></td><td align="left"><p>0.0241</p></td><td align="left"><p>0.0510</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>3.181</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq443.gif" /></p></td><td align="left"><p>0.0261</p></td><td align="left"><p>0.0125</p></td></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><mi>A</mi><mrow><mi mathvariant="italic">tt</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq444.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><mi>A</mi><mrow><mi mathvariant="italic">gg</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq445.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><mi>A</mi><mrow><mi>Z</mi><msub><mi>h</mi><mn>1</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq446.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><mi>A</mi><mrow><mi>Z</mi><msub><mi>h</mi><mn>3</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq447.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><mi>A</mi><mrow><mi mathvariant="italic">bb</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq448.gif" /></p></td><td align="left" /><td align="left" /></tr><tr><td align="left"><p>0.6987</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>1.771</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq449.gif" /></p></td><td align="left"><p>0.1008</p></td><td align="left"><p>0.1981</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>5.36</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq450.gif" /></p></td><td align="left" /><td align="left" /></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msup><mi>H</mi><mo>±</mo></msup><mrow><mi mathvariant="italic">tb</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq451.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msup><mi>H</mi><mo>±</mo></msup><mrow><mi>W</mi><msub><mi>h</mi><mn>3</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq452.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msup><mi>H</mi><mo>±</mo></msup><mrow><mi>W</mi><msub><mi>h</mi><mn>1</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq453.gif" /></p></td><td align="left" /><td align="left" /><td align="left" /><td align="left" /></tr><tr><td align="left"><p>0.6000</p></td><td align="left"><p>0.3004</p></td><td align="left"><p>0.0984</p></td><td align="left" /><td align="left" /><td align="left" /><td align="left" /></tr></tbody></table> </ephtml> </p> <hd id="AN0141768308-14">Type IV (flipped)</hd> <p>In the type IV (flipped) scenario the couplings of the scalars to quarks are unchanged with respect to the type II scenario. The coupling to leptons, however, is equal to the coupling to the up-type quarks, instead of being equal to the coupling to down-type quarks, as it is in the type II scenario. This means that while the parameter space that can fit the LEP and the CMS excesses will be very similar to the one in the type II analysis, the non-suppression of the decay width of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> -leptons will have to be compensated. Apart from that, constrains especially from the SM-like Higgs boson measurements and from direct searches will be different (see also Sect. 5.3). For the scan in the type IV scenario we choose the same range of parameters as in the type II scenario, shown in Eq. (5.5). As explained in the beginning of Sect. 5 we further impose Eq. (5.4).</p> <p>Graph: Fig. 5 Type IV: the signal strengths μCMS and μLEP for each scan point respecting the experimental and theoretical constrains. The 1σ-region of both excesses is shown by the red ellipse. The colors show the mass of the charged Higgs. The magenta star indicates the best-fit point. The lowest (highest) value of MH± inside the 1σ ellipse is 650.01(931.85)GeV</p> <p>Graph: Fig. 6 Type IV: as in Fig. 5, but here the colors indicate the χred2 from HiggsSignals. The best-fit point (magenta) has χred2=1.11286 with 101 observations considered. The lowest (highest) value of χred2 within the 1σ ellipse is 0.9073 (1.3435)</p> <p>Graph: Fig. 7 Type IV: as in Fig. 1, but here the colors indicate the value of tanβ. The lowest (highest) value of tanβ within the 1σ ellipse is 0.7935 (3.592)</p> <p>Graph: Fig. 8 Allowed (green) and excluded (red) points considering direct searches (left) and flavor physics (right) in the MH±-tanβ plane. The magenta star is the best-fit point</p> <p>We show the results of our scan in the flipped scenario in Figs. 5, 6, 7. Again, the color code quantifies the charged Higgs-boson mass in Fig. 5, the reduced <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> </ephtml> from HiggsSignals in Fig. 6, and the value of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> in Fig. 7. As was the case in the type II scenario, a large number of points fit both the LEP and the CMS excesses simultaneously while being in agreement with the measurements of the SM-like Higgs boson properties. We again observe that the points that fit both excesses prefer low values of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> for the same reasons as in the type II scenario (see Sect. 5.1). Various points inside the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> ellipse have additionally a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>χ</mi><mi mathvariant="normal">red</mi><mn>2</mn></msubsup></math> </ephtml> from HiggsSignals below one, indicating the signal strength predictions for the SM-like Higgs boson on average are within the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> -uncertainties of each measurement. The reason for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>χ</mi><mrow><mi mathvariant="normal">red</mi></mrow><mn>2</mn></msubsup></math> </ephtml> to have values within the small range of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>0.9</mn></mrow></math> </ephtml> –1.3 are same as in Type-II scenario. Similar to the type II analysis, a clear preference of small <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> -values is visible, also for the points outside the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> ellipse. The largest value within the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> ellipse is <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi><mo>=</mo><mn>3.592</mn></mrow></math> </ephtml> , indicating that the relevant range of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> is captured also in the type IV scenario.</p> <p>The exclusion boundaries from direct searches and from flavor physics are practically the same as the ones we found in the type II scenario. We show in Fig. 8a the allowed and excluded points of our scan considering the collider searches in the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> - <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> plane. The most sensitive direct search is, as in type II, the production of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>H</mi><mo>±</mo></msup></math> </ephtml> in association with a <emph>tb</emph>-pair, and subsequent decay of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>H</mi><mo>±</mo></msup></math> </ephtml> to a <emph>tb</emph>-pair. For values of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi><mo><</mo><mn>1</mn></mrow></math> </ephtml> , points with a charged Higgs mass up to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>900</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> can be excluded. In Fig. 8b we show the excluded and allowed points regarding constraints derived from the prediction to the meson mass difference <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="normal">Δ</mi><msub><mi>M</mi><msub><mi>B</mi><mi>s</mi></msub></msub></mrow></math> </ephtml> . This limit is unchanged with respect to the one from the type II scenario, because of the similar quark Yukawa sectors in the two cases. <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi mathvariant="normal">Δ</mi><msub><mi>M</mi><msub><mi>B</mi><mi>s</mi></msub></msub></mrow></math> </ephtml> constraint is the dominant one regarding flavor observables for the range of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> scanned here, assuming that the exclusions from <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mtext>BR</mtext><mo stretchy="false">(</mo><msub><mi>B</mi><mi>s</mi></msub><mo stretchy="false">→</mo><msup><mi>μ</mi><mo>+</mo></msup><msup><mi>μ</mi><mo>-</mo></msup><mo stretchy="false">)</mo></mrow></math> </ephtml> constraints in the 2HDM do not change by more than <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>20</mn><mo>%</mo></mrow></math> </ephtml> due to the presence of the additional real singlet in the N2HDM [[<reflink idref="bib48" id="ref106">48</reflink>]].</p> <p>Parameters of the best-fit point and branching ratios of the scalars in the type IV scenario. Dimensionful parameters are given in GeV and the angles are given in radian</p> <p> <ephtml> <table frame="hsides" rules="groups"><thead><tr><th align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>m</mi><msub><mi>h</mi><mn>1</mn></msub></msub></math><inline-graphic href="10052_2019_7561_Article_IEq496.gif" /></p></th><th align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>m</mi><msub><mi>h</mi><mn>2</mn></msub></msub></math><inline-graphic href="10052_2019_7561_Article_IEq497.gif" /></p></th><th align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>m</mi><msub><mi>h</mi><mn>3</mn></msub></msub></math><inline-graphic href="10052_2019_7561_Article_IEq498.gif" /></p></th><th align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>m</mi><mi>A</mi></msub></math><inline-graphic href="10052_2019_7561_Article_IEq499.gif" /></p></th><th align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math><inline-graphic href="10052_2019_7561_Article_IEq500.gif" /></p></th><th align="left" /><th align="left" /></tr></thead><tbody><tr><td align="left"><p>97.8128</p></td><td align="left"><p>125.09</p></td><td align="left"><p>485.998</p></td><td align="left"><p>651.502</p></td><td align="left"><p>651.26</p></td><td align="left" /><td align="left" /></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mo>tan</mo><mi>β</mi></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq501.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>α</mi><mn>1</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq502.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>α</mi><mn>2</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq503.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>α</mi><mn>3</mn></msub></math><inline-graphic href="10052_2019_7561_Article_IEq504.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mi>m</mi><mrow><mn>12</mn></mrow><mn>2</mn></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq505.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msub xmlns=""><mi>v</mi><mi>S</mi></msub></math><inline-graphic href="10052_2019_7561_Article_IEq506.gif" /></p></td><td align="left" /></tr><tr><td align="left"><p>1.3147</p></td><td align="left"><p>1.27039</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mo>-</mo><mn>1.02829</mn></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq507.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mo>-</mo><mn>1.32496</mn></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq508.gif" /></p></td><td align="left"><p>41034.1</p></td><td align="left"><p>647.886</p></td><td align="left" /></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi mathvariant="italic">bb</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq509.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi mathvariant="italic">gg</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq510.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi mathvariant="italic">cc</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq511.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi>τ</mi><mi>τ</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq512.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi>γ</mi><mi>γ</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq513.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi mathvariant="italic">WW</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq514.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi mathvariant="italic">ZZ</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq515.gif" /></p></td></tr><tr><td align="left"><p>0.4074</p></td><td align="left"><p>0.2071</p></td><td align="left"><p>0.1189</p></td><td align="left"><p>0.2483</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>2.139</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq516.gif" /></p></td><td align="left"><p>0.0135</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>1.579</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq517.gif" /></p></td></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>2</mn></msub><mrow><mi mathvariant="italic">bb</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq518.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>2</mn></msub><mrow><mi mathvariant="italic">gg</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq519.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>2</mn></msub><mrow><mi mathvariant="italic">cc</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq520.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>2</mn></msub><mrow><mi>τ</mi><mi>τ</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq521.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>2</mn></msub><mrow><mi>γ</mi><mi>γ</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq522.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>2</mn></msub><mrow><mi mathvariant="italic">WW</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq523.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>2</mn></msub><mrow><mi mathvariant="italic">ZZ</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq524.gif" /></p></td></tr><tr><td align="left"><p>0.5363</p></td><td align="left"><p>0.0939</p></td><td align="left"><p>0.0345</p></td><td align="left"><p>0.0758</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>2.247</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq525.gif" /></p></td><td align="left"><p>0.2267</p></td><td align="left"><p>0.0284</p></td></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>3</mn></msub><mrow><mi mathvariant="italic">tt</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq526.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>3</mn></msub><mrow><mi mathvariant="italic">gg</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq527.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>3</mn></msub><mrow><msub><mi>h</mi><mn>1</mn></msub><msub><mi>h</mi><mn>1</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq528.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>3</mn></msub><mrow><msub><mi>h</mi><mn>1</mn></msub><msub><mi>h</mi><mn>2</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq529.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>3</mn></msub><mrow><msub><mi>h</mi><mn>2</mn></msub><msub><mi>h</mi><mn>2</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq530.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>3</mn></msub><mrow><mi mathvariant="italic">WW</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq531.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msub><mi>h</mi><mn>3</mn></msub><mrow><mi mathvariant="italic">ZZ</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq532.gif" /></p></td></tr><tr><td align="left"><p>0.8078</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>2.707</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq533.gif" /></p></td><td align="left"><p>0.0124</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>2.111</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq534.gif" /></p></td><td align="left"><p>0.0119</p></td><td align="left"><p>0.1085</p></td><td align="left"><p>0.0517</p></td></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><mi>A</mi><mrow><mi mathvariant="italic">tt</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq535.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><mi>A</mi><mrow><mi mathvariant="italic">gg</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq536.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><mi>A</mi><mrow><mi>Z</mi><msub><mi>h</mi><mn>1</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq537.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><mi>A</mi><mrow><mi>Z</mi><msub><mi>h</mi><mn>2</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq538.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><mi>A</mi><mrow><mi>Z</mi><msub><mi>h</mi><mn>3</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq539.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><mi>A</mi><mrow><mi mathvariant="italic">bb</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq540.gif" /></p></td><td align="left" /></tr><tr><td align="left"><p>0.7090</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>1.940</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq541.gif" /></p></td><td align="left"><p>0.1007</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>9.652</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq542.gif" /></p></td><td align="left"><p>0.1780</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>6.49</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>4</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq543.gif" /></p></td><td align="left" /></tr><tr><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msup><mi>H</mi><mo>±</mo></msup><mrow><mi mathvariant="italic">tb</mi></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq544.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msup><mi>H</mi><mo>±</mo></msup><mrow><mi>W</mi><msub><mi>h</mi><mn>3</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq545.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msup><mi>H</mi><mo>±</mo></msup><mrow><mi>W</mi><msub><mi>h</mi><mn>2</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq546.gif" /></p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup xmlns=""><mtext>BR</mtext><msup><mi>H</mi><mo>±</mo></msup><mrow><mi>W</mi><msub><mi>h</mi><mn>1</mn></msub></mrow></msubsup></math><inline-graphic href="10052_2019_7561_Article_IEq547.gif" /></p></td><td align="left" /><td align="left" /><td align="left" /></tr><tr><td align="left"><p>0.6820</p></td><td align="left"><p>0.2046</p></td><td align="left"><p><math xmlns="http://www.w3.org/1998/Math/MathML"><mrow xmlns=""><mn>9.820</mn><mo>·</mo><msup><mn>10</mn><mrow><mo>-</mo><mn>3</mn></mrow></msup></mrow></math><inline-graphic href="10052_2019_7561_Article_IEq548.gif" /></p></td><td align="left"><p>0.1024</p></td><td align="left" /><td align="left" /><td align="left" /></tr></tbody></table> </ephtml> </p> <p>The details of our best-fit point of the scan in the N2HDM type IV, indicated with the magenta star in Figs. 5, 6, 7, 8b, are listed in Table 6. The value of the charged Higgs boson mass is just on the lower end of the scanned range. Comparing to the best-fit point of our scan in the N2HDM type II, shown in Table 5, we observe that the values for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> and the mixing angles in the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -even scalar sector <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>α</mi><mi>i</mi></msub></math> </ephtml> are very similar. This is due to the fact that the effective coefficients of the couplings of the scalars to quarks are the same. Also the decays of the heavier Higgs bosons are similar to the type II best-fit point. The striking difference between the best-fit points in both types is that, even though the suppression of the branching ratio of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> to <emph>b</emph>-quarks is larger in type IV, the branching ratio to photons remains smaller. As already discussed in Sect. 4, in the parameter region, in which the excesses can be accommodated, there is an enhancement of the decay width to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> -leptons: the value for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mtext>BR</mtext><msub><mi>h</mi><mn>1</mn></msub><mrow><mi>τ</mi><mi>τ</mi></mrow></msubsup></math> </ephtml> in Table 6 is roughly five times larger than the one in Table 5.</p> <p>Graph: Fig. 9 Branching fraction of h1 to two photons (upper row) and to two τ-leptons (lower row) for each parameter point respecting the experimental and theoretical constrains in the type II (left) and the type IV scenario (right) as a function of the ratio of the coupling of h1 to bottom and top quarks normalized to the SM prediction. The blue points have χCMS-LEP2≤2.30, while the red points have χCMS-LEP2>2.30</p> <p>This circumstance is not a particular feature of the best-fit point, but a general difference between type II and type IV. To illustrate this, we show in Fig. 9 the branching ratio of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> decaying into photons (top) and into <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> -leptons (bottom) for type II (left) and type IV (right) as a function of the absolute value of the ratio of the coupling modifier coefficients <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>t</mi><mover accent="true"><mrow><mi>t</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math> </ephtml> . The blue and red points are the ones lying inside and outside the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> ellipse regarding <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msubsup><mi>χ</mi><mrow><mrow><mi mathvariant="normal">CMS</mi><mo>-</mo><mi mathvariant="normal">LEP</mi></mrow></mrow><mn>2</mn></msubsup></math> </ephtml> , respectively. When <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mo stretchy="false">/</mo><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>t</mi><mover accent="true"><mrow><mi>t</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mrow><mo stretchy="false">|</mo></mrow></mrow></math> </ephtml> is small, the branching ratio for the decay into photons receives an enhancement and it is possible to fit the CMS excess. However, in type II the enhancement is larger than in type IV, because the branching ratio for the decay into <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> -leptons scales with the same factor as <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math> </ephtml> in type II, but proportional to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>t</mi><mover accent="true"><mrow><mi>t</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub></math> </ephtml> in type IV.</p> <p>In Fig. 10 we show the signal strengths for both excesses in the N2HDM type II (left) and type IV (right), with colors indicating the singlet component of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> . Comparing both plots, it becomes apparent that the enhanced decay width into <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> pairs results in a substantial suppression of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub></math> </ephtml> in the type IV scenario. For similar values of the singlet component <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi mathvariant="normal">Σ</mi><msub><mi>h</mi><mn>1</mn></msub></msub></math> </ephtml> , the type II scenario can reach larger <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub></math> </ephtml> , whereas the size of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">LEP</mi></msub></math> </ephtml> is very similar in both scenarios. Remarkably, the type II scenario can reach values of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub><mo>∼</mo><mn>1</mn></mrow></math> </ephtml> , meaning that the signal strength prediction for <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub></math> </ephtml> is as big as the one of a hypothetical SM-like Higgs boson at the same mass, even though it is dominantly singlet-like. In the type IV scenario, on the other hand, there is no point above the upper <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> -limit of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub><mo>=</mo><mn>0.8</mn></mrow></math> </ephtml> . As one can anticipate form these plots, points with <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi mathvariant="normal">Σ</mi><msub><mi>h</mi><mn>1</mn></msub></msub><mo>≥</mo><mn>0.9</mn></mrow></math> </ephtml> are not expected in the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> ellipse. We have verified this by dedicated scans, i.e. it is confirmed that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi mathvariant="normal">Σ</mi><msub><mi>h</mi><mn>1</mn></msub></msub><mo>≤</mo><mn>0.9</mn></mrow></math> </ephtml> does not have a relevant impact on the overall results of our analysis.</p> <p>Graph: Fig. 10 Shown are the signal strengths μCMS and μLEP for each parameter point respecting the experimental and theoretical constrains in the type II and the type IV scenario. The 1σ-region of both excesses is shown by the red ellipse. The colors show the singlet component of h1. The magenta star is the best-fit point</p> <hd id="AN0141768308-15">Future searches</hd> <p>A light singlet-like scalar, as is present in the N2HDM, is very challenging to directly search for at the LHC, because of its suppressed couplings to all SM particles. That is why it might have escaped discovery so far except for some alluring hints, two of which we have focussed on in this work. Indirect probes for such a particle are possible with precision measurements of the couplings of the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>125</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> Higgs state. We will discuss both possibilities as well as searches for heavy Higgs bosons in the following.</p> <hd id="AN0141768308-16">Indirect searches</hd> <p>Currently, uncertainties on the measurement of the coupling strengths of the SM-like Higgs boson at the LHC are still large, i.e., at the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> -level they are of the same order as the modifications of the couplings present in our analysis in the N2HDM [[<reflink idref="bib3" id="ref107">3</reflink>], [<reflink idref="bib97" id="ref108">97</reflink>]]. In the future, once the complete <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>300</mn><mspace width="0.166667em" /><mspace width="0.333333em" /><mtext>fb</mtext><msup><mspace width="0.333333em" /><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></math> </ephtml> collected at the LHC are analyzed, the constraints on the couplings of the SM-like Higgs boson will benefit from the reduction of statistical uncertainties. Even tighter constraints are expected from the LHC after the high-luminosity upgrade (HL-LHC), when the planned amount of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>3000</mn><mspace width="0.166667em" /><mspace width="0.333333em" /><mtext>fb</mtext><msup><mspace width="0.333333em" /><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></math> </ephtml> integrated luminosity will have been collected [[<reflink idref="bib99" id="ref109">99</reflink>]]. Finally, a future linear <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>e</mi><mo>+</mo></msup><msup><mi>e</mi><mo>-</mo></msup></mrow></math> </ephtml> collider like the ILC could improve the precision measurements of the Higgs boson couplings even further due to two reasons [[<reflink idref="bib99" id="ref110">99</reflink>]].[<reflink idref="bib3" id="ref111">3</reflink>] Firstly, a lepton collider has the advantage of massively reduced QCD background compared to a hadron collider like the LHC. Secondly, the cross section of the Higgs boson can be measured independently, and the total width (and therefore also the coupling modifiers) can be reconstructed without model assumptions.</p> <p>Several studies have been performed to estimate the future constraints on the coupling modifiers of the SM-like Higgs boson at the LHC [[<reflink idref="bib99" id="ref112">99</reflink>], [<reflink idref="bib101" id="ref113">101</reflink>]–[<reflink idref="bib104" id="ref114">104</reflink>]] and the ILC [[<reflink idref="bib99" id="ref115">99</reflink>], [<reflink idref="bib105" id="ref116">105</reflink>]–[<reflink idref="bib110" id="ref117">110</reflink>]], assuming that no deviations from the SM predictions will be found. Here, we illustrate the capability of both experiments to either rule out or confirm the scenarios we presented in our paper. We compare our scan points to the expected precisions of the LHC and the ILC as they are reported in Refs. [[<reflink idref="bib109" id="ref118">109</reflink>]], neglecting possible correlations of the coupling modifiers.</p> <p>Graph: Fig. 11 Scan points of our analysis in the type II (blue) and type IV (red) scenario in the |ch2ττ¯|-|ch2bb¯| plane (top) and the |ch2ττ¯|-|ch2tt¯| plane (bottom). In the upper plot we highlight in yellow the points of the type II scenario that overlap with points from the type IV scenario in the lower plot, i.e., points with |ch2tt¯|∼|ch2bb¯|∼|ch2ττ¯|. In the same way in the lower plot we highlight in yellow the points of the type IV scenario that overlap with points from the type II scenario in the upper plot. The dashed ellipses are the projected uncertainties at the HL-LHC [[<reflink idref="bib110" id="ref119">110</reflink>]] (magenta) and the ILC [[<reflink idref="bib109" id="ref120">109</reflink>]] (green and orange) of the measurements of the coupling modifiers at the 68% confidence level, assuming that no deviation from the SM prediction will be found (more details in the text). We also show with the dotted black lines the 1σ ellipses of the current measurements from CMS [[<reflink idref="bib98" id="ref121">98</reflink>]] and ATLAS [[<reflink idref="bib97" id="ref122">97</reflink>]]</p> <p>In Fig. 11 we plot the coupling modifier of the SM-like Higgs boson <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>2</mn></msub></math> </ephtml> to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> -leptons on the horizontal axis against the coupling coefficient to <emph>b</emph>-quarks (top) and to <emph>t</emph>-quarks (bottom) for both types. These points passed all the experimental and theoretical constraints, including the verification of SM-like Higgs boson properties in agreement with LHC results using HiggsSignals. In the top plot the blue points lie on a diagonal line, because in type II the coupling to leptons and to down-type quarks scale identically, while in the bottom plot the red points representing the type IV scenario lie on the diagonal, because there the lepton-coupling scales in the same way as the coupling to up-type quarks. The current measurements on the coupling modifiers by ATLAS [[<reflink idref="bib97" id="ref123">97</reflink>]] and CMS [[<reflink idref="bib98" id="ref124">98</reflink>]] are shown as black ellipses, although the corresponding uncertainties are still very large.</p> <p>We include several future precisions for the coupling measurements which we explain in the following. It should be noted that they are centered around the SM predictions to show the potential to discriminate the SM from the N2HDM. The magenta ellipse in each plot shows the expected precision of the measurement of the coupling coefficients at the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> -level at the HL-LHC from Ref. [[<reflink idref="bib110" id="ref125">110</reflink>]]. The current uncertainties and the HL-LHC analysis are based on the coupling modifier, or <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>κ</mi></math> </ephtml> -framework, in which the tree-level couplings of the SM-like Higgs boson to vector bosons, the top quark, the bottom quark, the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> and the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>μ</mi></math> </ephtml> lepton, and the three loop-induced couplings to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>γ</mi><mi>γ</mi></mrow></math> </ephtml> , <emph>gg</emph> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>Z</mi><mi>γ</mi></mrow></math> </ephtml> receive a factor <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>κ</mi><mi>i</mi></msub></math> </ephtml> quantifying potential modifications from the SM predictions. These modifiers are then constrained using a global fit to projected HL-LHC data assuming no deviation from the SM prediction will be found. The uncertainties found for the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>κ</mi><mi>i</mi></msub></math> </ephtml> can directly be applied to the future precision of the coupling modifiers <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>c</mi><mrow><msub><mi>h</mi><mi>i</mi></msub><mo>⋯</mo></mrow></msub></math> </ephtml> we use in our paper. We use the uncertainties given under the assumptions that no decay of the SM-like Higgs boson to BSM particles is present, and that current systematic uncertainties will be reduced in addition to the reduction of statistical uncertainties due to the increased statistics.</p> <p>The green and the orange ellipses show the corresponding expected uncertainties when the HL-LHC results are combined with projected data from the ILC after the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>250</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> phase and the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>500</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> phase, respectively, taken from Ref. [[<reflink idref="bib109" id="ref126">109</reflink>]]. Their analysis is based on a pure effective field theory calculation, supplemented by further assumptions to facilitate the combination with the HL-LHC projections in the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>κ</mi></math> </ephtml> -framework. In particular, in the effective field theory approach the vector boson couplings can be modified beyond a simple rescaling. This possibility was excluded by recasting the fit setting two parameters related to the couplings to the <emph>Z</emph>-boson and the <emph>W</emph>-boson to zero (for details we refer to Ref. [[<reflink idref="bib109" id="ref127">109</reflink>]]).</p> <p>Remarkably, while current constraints on the SM-like Higgs-boson properties allow for large deviations of the couplings of up to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>40</mn><mo>%</mo></mrow></math> </ephtml> , the allowed parameter space of our scans will be significantly reduced by the expected constraints from the HL-LHC and the ILC.[<reflink idref="bib4" id="ref128">4</reflink>] For instance, the uncertainty of the coupling to <emph>b</emph>-quarks will shrink below <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>4</mn><mo>%</mo></mrow></math> </ephtml> at the HL-LHC and below <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mo>%</mo></mrow></math> </ephtml> at the ILC. For the coupling to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>τ</mi></math> </ephtml> -leptons the uncertainty is expected to be at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mo>%</mo></mrow></math> </ephtml> at the HL-LHC. Again, the ILC could reduce this uncertainty further to below <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>1</mn><mo>%</mo></mrow></math> </ephtml> . For the coupling to <emph>t</emph>-quarks, on the other hand, the ILC cannot improve substantially the expected uncertainty of the HL-LHC (but permit a model-independent analysis). Still, the HL-LHC and the ILC are expected to reduce the uncertainty by roughly a factor of three. These numbers indicate that our explanation of the LEP and the CMS excesses within the N2HDM is testable indirectly using future precision measurements of the SM-like Higgs-boson couplings.</p> <p>Comparing both plots in Fig. 11 we find that, independent of the type of the N2HDM, there is not a single benchmark point that coincides with the SM prediction regarding the three coupling coefficients shown. This implies that, once these couplings are measured precisely by the HL-LHC and the ILC, a deviation of the SM prediction has to be measured in at least one of the couplings, if our explanation of the excesses is correct. Conversely, if no deviation from the SM prediction regarding these couplings will be measured, our explanation would be ruled out entirely. This result is not surprising, since we explicitly demanded a lower limit on the singlet component of the SM-like Higgs boson of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi mathvariant="normal">Σ</mi><msub><mi>h</mi><mn>2</mn></msub></msub><mo>≥</mo><mn>10</mn><mo>%</mo></mrow></math> </ephtml> in our scans. However, we checked explicitly by dedicated scans, as discussed above, that benchmark points with <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi mathvariant="normal">Σ</mi><msub><mi>h</mi><mn>2</mn></msub></msub><mo><</mo><mn>10</mn><mo>%</mo></mrow></math> </ephtml> cannot accommodate both excesses, because in that case the up-type doublet component of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> is too small.</p> <p>Furthermore, in the case that a deviation from the SM prediction will be found, the predicted scaling behavior of the coupling coefficients in the type II scenario (upper plot) and the type IV scenario (lower plot), might lead to distinct possibilities for the two models to accommodate these possible deviations. In this case, precision measurements of the SM-like Higgs boson couplings could be used to differentiate between the type II and type IV solution and thus to exclude one of the two scenarios. This is true for all points except the ones highlighted in yellow in Fig. 11. The yellow points are a subset of points of our scans that, if such deviations of the SM-like Higgs boson couplings will be measured, could correspond to a benchmark point both in the type II and type IV. However, note that this subset of points is confined to the diagonal lines of both plots, and thus corresponds to a very specific subset of the overall allowed parameter space. For the type II scenario, in the upper plot, the yellow points are determined by the additional constraint that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>2</mn></msub><mi>t</mi><mover accent="true"><mrow><mi>t</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mrow><mo stretchy="false">|</mo><mo>∼</mo><mo stretchy="false">|</mo></mrow><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>2</mn></msub><mi>τ</mi><mover accent="true"><mrow><mi>τ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mrow><mo stretchy="false">|</mo></mrow></mrow></math> </ephtml> , which is exactly true in the type IV scenario. For the type IV scenario, in the lower plot, the yellow points are determined by the additional constraint that <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>2</mn></msub><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mrow><mo stretchy="false">|</mo><mo>∼</mo><mo stretchy="false">|</mo></mrow><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>2</mn></msub><mi>τ</mi><mover accent="true"><mrow><mi>τ</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></msub><mrow><mo stretchy="false">|</mo></mrow></mrow></math> </ephtml> , which is exactly true in the type II scenario.</p> <p>Graph: Fig. 12 As in Fig. 11 but with |ch2VV| on the vertical axis</p> <p>For completeness we show in Fig. 12 the absolute value of the coupling modifier of the SM-like Higgs boson w.r.t. the vector boson couplings <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>2</mn></msub><mi>V</mi><mi>V</mi></mrow></msub><mrow><mo stretchy="false">|</mo></mrow></mrow></math> </ephtml> on the vertical axis. Again, the parameter points of both types show deviations larger than the projected experimental uncertainty at HL-LHC and ILC. The deviations in <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mrow><mo stretchy="false">|</mo></mrow><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>2</mn></msub><mi>V</mi><mi>V</mi></mrow></msub><mrow><mo stretchy="false">|</mo></mrow></mrow></math> </ephtml> are even stronger than for the couplings to fermions. A <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> deviation from the SM prediction is expected with HL-LHC accuracy. At the ILC a deviation of more than <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>5</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> would be visible. As mentioned already, a suppression of the coupling to vector bosons is explicitly expected by demanding <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msub><mi mathvariant="normal">Σ</mi><msub><mi>h</mi><mn>2</mn></msub></msub><mo>≥</mo><mn>10</mn><mo>%</mo></mrow></math> </ephtml> . However, since points with lower singlet component cannot accommodate both excesses, this does not contradict the conclusion that the explanation of both excesses can be probed with high significance with future Higgs-boson coupling measurements.</p> <hd id="AN0141768308-17">Direct searches</hd> <p>Direct searches for the singlet-dominated scalar is particularly challenging at the LHC due to the large background, especially since the mass scale is close to the <emph>Z</emph>-boson resonance. In spite of that, the diphoton bump which has persisted through LHC Run I and II is worth exploring in additional Higgs-boson searches of future runs of the LHC. In particular the search for charged Higgs bosons appears promising in the region of low <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> . In Sect. 3.2 we have indicated that indeed already with the current data the charged Higgs-boson searches with <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>H</mi><mo>±</mo></msup><mo stretchy="false">→</mo><mi>t</mi><mi>b</mi></mrow></math> </ephtml> provide an important constraint in the favored region of parameter space. Consequently, further searches at the (HL-)LHC will yield stronger constraints or (hopefully) discover signs of a charged Higgs boson in the region between <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>600</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>950</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> . Prospects for a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>5</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> discovery in the charged Higgs-boson searches can be found in Ref. [[<reflink idref="bib111" id="ref129">111</reflink>]]. The prospects for the searches for the heavy neutral Higgs bosons, decaying dominantly to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mover accent="true"><mrow><mi>t</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></math> </ephtml> , may also be promising. However, we are not aware of corresponding HL-LHC projections.</p> <p>Graph: Fig. 13 The 95% CL expected (orange dashed) and observed (blue) upper bounds on the Higgsstrahlung production process with associated decay of the scalar to a pair of bottom quarks at LEP [[<reflink idref="bib9" id="ref130">9</reflink>]]. Expected 95% CL upper limits on the Higgsstrahlung production process normalized to the SM prediction S95 at the ILC using the traditional (red) and the recoil technique (green) as described in the text [[<reflink idref="bib100" id="ref131">100</reflink>]]. We also show the points of our scan in the type II scenario which lie within (blue) and outside (red) the 1σ ellipse regarding the CMS and the LEP excesses</p> <p>Graph: Fig. 14 The same as in Fig. 13, but with the points of our scan in the type IV scenario</p> <p> <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>e</mi><mo>+</mo></msup><msup><mi>e</mi><mo>-</mo></msup></mrow></math> </ephtml> colliders, on the other hand, show good prospects for the search of light scalars [[<reflink idref="bib100" id="ref132">100</reflink>], [<reflink idref="bib112" id="ref133">112</reflink>]]. The main production channel in the mass and energy range that we are interested in is the Higgs-strahlung process <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>e</mi><mo>+</mo></msup><msup><mi>e</mi><mo>-</mo></msup><mo stretchy="false">→</mo><mi>ϕ</mi><mi>Z</mi></mrow></math> </ephtml> , where <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϕ</mi></math> </ephtml> is the scalar being searched for. The LEP collaboration has previously performed such searches [[<reflink idref="bib9" id="ref134">9</reflink>]], which resulted in the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> excess given by <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">LEP</mi></msub></math> </ephtml> . These searches were limited by the low luminosity of LEP. However, the ILC, with its much higher luminosity and the possibility of using polarized beams, has a substantially higher potential to discover the light scalars. The searches performed at LEP can be divided into two categories: the 'traditional method', where studies are based on the decay mode <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>ϕ</mi><mo stretchy="false">→</mo><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></math> </ephtml> along with <emph>Z</emph> decays to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>μ</mi><mo>+</mo></msup><msup><mi>μ</mi><mo>-</mo></msup></mrow></math> </ephtml> final states. This method introduces certain amount of model dependence into the analysis because of the reference to a specific decay mode of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi>ϕ</mi></math> </ephtml> . The more model independent 'recoil technique' used by the OPAL collaboration of LEP looked for light states by analyzing the recoil mass distribution of the di-muon system produced in <emph>Z</emph> decay [[<reflink idref="bib8" id="ref135">8</reflink>]].</p> <p>In Figs. 13 and 14 we show previous bounds from the LEP as well as the projected bounds from the ILC searches for light scalars in type II and type IV N2HDM scenarios respectively. The lines indicating the ILC reach for a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msqrt><mi>s</mi></msqrt><mo>=</mo><mn>250</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> machine with beam polarizations <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><msub><mi>P</mi><msup><mi>e</mi><mo>-</mo></msup></msub><mo>,</mo><msub><mi>P</mi><msup><mi>e</mi><mo>+</mo></msup></msub><mo stretchy="false">)</mo></mrow></math> </ephtml> of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo stretchy="false">(</mo><mo>-</mo><mn>80</mn><mo>%</mo><mo>,</mo><mo>+</mo><mn>30</mn><mo>%</mo><mo stretchy="false">)</mo></mrow></math> </ephtml> and an integrated luminosity of 2000 <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mspace width="0.333333em" /><mtext>fb</mtext><msup><mspace width="0.333333em" /><mrow><mo>-</mo><mn>1</mn></mrow></msup></mrow></math> </ephtml> are as evaluated in Ref. [[<reflink idref="bib100" id="ref136">100</reflink>]]. The quantity <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>S</mi><mn>95</mn></msub></math> </ephtml> used in their analysis corresponds to an upper limit at the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>95</mn><mo>%</mo></mrow></math> </ephtml> confidence level on the cross section times branching ratio generated within the 'background only' hypothesis, where the cross section has been normalized to the reference SM-Higgs cross section and the BRs have been assumed to be as in the SM (with a Higgs boson of the same mass). Consequently, we take the obtained limits to be valid for the total cross section times branching ratio. The colored points shown in Figs. 13 and 14 are the points of our scans in the type II and type IV scenario satisfying all the theoretical and experimental constraints. The plots demonstrate that the parameter points of our scans accommodating the excesses (shown in blue) can in both cases completely be covered by searches at the ILC for additional Higgs-like scalars.</p> <p>Depending on <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>c</mi><mrow><msub><mi>h</mi><mn>1</mn></msub><mi>V</mi><mi>V</mi></mrow></msub></math> </ephtml> , i.e., the light Higgs-boson production cross section, the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>h</mi><mn>1</mn></msub></math> </ephtml> can be produced and analyzed in detail at the ILC. A detailed analysis of the corresponding experimental precision of the light Higgs-boson couplings, however, is beyond the scope of this paper.</p> <hd id="AN0141768308-18">Conclusions</hd> <p>We analyzed a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>3</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> excess (local) in the diphoton decay mode at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>96</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> as reported by CMS, together with a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>2</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> excess (local) in the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>b</mi><mover accent="true"><mrow><mi>b</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></math> </ephtml> final state at LEP in the same mass range. We interpret this possible signal as a Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM), where this Higgs sector corresponds to the Higgs sectors of the NMSSM or the (one-generation case) <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>μ</mi><mi>ν</mi><mi mathvariant="normal">SSM</mi></mrow></math> </ephtml> (up to SUSY relations and an additional <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mi mathvariant="script">CP</mi></math> </ephtml> -odd Higgs boson, which is not relevant in our analysis).</p> <p>We include all relevant constraints in our analysis. These are theoretical constraints from perturbativity and the requirement that the minimum of the Higgs potential is a global minimum. We take into account the direct searches for additional Higgs bosons from LEP. the Tevatron and the LHC, as well as the measurements of the properties of the Higgs boson at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>125</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> . We furthermore include bounds from flavor physics and from electroweak precision data.</p> <p>We demonstrate that due to the structure of the couplings of the Higgs doublets to fermions only two types of the N2HDM, type II and type IV (flipped), can fit simultaneously the two excesses. On the other hand, the other two types, type I and type III (lepton specific), cannot be brought in agreement with the two excesses. Subsequently, we scanned the free parameters in the two favored versions of the N2HDM, where the results are similar in both scenarios. We find that the lowest possible values of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>M</mi><msup><mi>H</mi><mo>±</mo></msup></msub></math> </ephtml> above <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>650</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> just above 1 are favored. The reduced <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msup><mi>χ</mi><mn>2</mn></msup></math> </ephtml> from the Higgs-boson measurements is found roughly in the range <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>0.9</mn><mo>≲</mo><msubsup><mi>χ</mi><mrow><mi mathvariant="normal">red</mi></mrow><mn>2</mn></msubsup><mo>≲</mo><mn>1.3</mn></mrow></math> </ephtml> . Due to the different coupling to leptons in type II and type IV, in general larger values of <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><msub><mi>μ</mi><mi mathvariant="normal">CMS</mi></msub></math> </ephtml> can be reached in the former, and the CMS excess can be fitted "more naturally" in the type II N2HDM. Incidentally, this is exactly the Higgs sector that is required by supersymmetric models.</p> <p>Finally, we analyzed how the favored scenarios can be tested at future colliders. The (HL-)LHC will continue the searches/measurements in the diphoton final state. But apart from that we are not aware of other channels for the light Higgs boson that could be accessible. Concerning the searches for heavy N2HDM Higgs bosons, particularly interesting are the prospects for charged Higgs bosons. For the low <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>tan</mo><mi>β</mi></mrow></math> </ephtml> values favored in our analysis, these searches have the best potential to discover a new heavy Higgs boson at the LHC Run III or the HL-LHC. Also the decay of the heavy neutral Higgs bosons to <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mi>t</mi><mover accent="true"><mrow><mi>t</mi></mrow><mrow><mo stretchy="false">¯</mo></mrow></mover></mrow></math> </ephtml> could be promising.</p> <p>A future <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><msup><mi>e</mi><mo>+</mo></msup><msup><mi>e</mi><mo>-</mo></msup></mrow></math> </ephtml> collider, such as the ILC, will be able to produce the light Higgs state at <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>96</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> in large numbers and consequently study its decay patterns. Similarly, we demonstrated that the high anticipated precision in the coupling measurements of the <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>125</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> Higgs boson at the ILC (or CLIC, FCC-ee, CepC) will allow to find deviations in particular in the couplings to massive gauge bosons if the N2HDM with a <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mo>∼</mo><mn>96</mn><mspace width="0.166667em" /><mspace width="0.166667em" /><mi mathvariant="normal">GeV</mi></mrow></math> </ephtml> Higgs boson is realized in nature. Here a deviation of more than <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>2</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> and <ephtml> <math xmlns="http://www.w3.org/1998/Math/MathML"><mrow><mn>5</mn><mspace width="0.166667em" /><mi>σ</mi></mrow></math> </ephtml> at the HL-LHC and the ILC, respectively, can be anticipated.</p> <p>We are eagerly awaiting updated analyses from ATLAS and CMS to clarify the validity of the excess in the diphoton channel.</p> <hd id="AN0141768308-19">Acknowledgements</hd> <p>We thank R. Santos, T. Stefaniak and G. Weiglein for helpful discussions. M.C. thanks D. Azevedo for discussions regarding ScannerS. The work was supported in part by the MEINCOP (Spain) under contract FPA2016-78022-P and in part by the AEI through the grant IFT Centro de Excelencia Severo Ochoa SEV-2016-0597. The work of T.B. and S.H. was supported in part by the Spanish Agencia Estatal de Investigación (AEI), in part by the EU Fondo Europeo de Desarrollo Regional (FEDER) through the project FPA2016-78645-P, in part by the "Spanish Red Consolider MultiDark" FPA2017-90566-REDC. The work of T.B. was funded by Fundación La Caixa under 'La Caixa-Severo Ochoa' international predoctoral grant.</p> <hd id="AN0141768308-20">Data Availability Statement</hd> <p>This manuscript has no associated data or the data will not be deposited. [Authors' comment: Data sharing not applicable to this article as no datasets were generated or analysed during the current study.]</p> <ref id="AN0141768308-21"> <title> References </title> <blist> <bibl id="bib1" idref="ref1" type="bt">1</bibl> <bibtext> ATLAS Collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Phys. Lett. B716, 1–29 (2012). arXiv:1207.7214</bibtext> </blist> <blist> <bibl id="bib2" idref="ref54" type="bt">2</bibl> <bibtext> CMS Collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B 716, 30–61 (2012). arXiv:1207.7235</bibtext> </blist> <blist> <bibl id="bib3" idref="ref2" type="bt">3</bibl> <bibtext> ATLAS, CMS Collaboration, G. Aad et al., Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at s=7\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \sqrt{s}=7 $$\end{document} and 8 TeV. JHEP 08, 045 (2016). arXiv:1606.02266</bibtext> </blist> <blist> <bibl id="bib4" idref="ref3" type="bt">4</bibl> <bibtext> Bernon J, Gunion JF, Jiang Y, Kraml S. Light Higgs bosons in two-Higgs-doublet models. Phys. Rev. D. 2015; 91; 7: 0750192015PhRvD..91g5019B. 10.1103/PhysRevD.91.075019</bibtext> </blist> <blist> <bibl id="bib5" type="bt">5</bibl> <bibtext> T. Robens, T. Stefaniak, Status of the Higgs singlet extension of the standard model after LHC Run 1. Eur. Phys. J. C 75, 104 (2015). arXiv:1501.02234</bibtext> </blist> <blist> <bibl id="bib6" idref="ref25" type="bt">6</bibl> <bibtext> Heinemeyer S, Stål O, Weiglein G. Interpreting the LHC Higgs Search Results in the MSSM. Phys. Lett. B. 2012; 710: 201-2062012PhLB..710..201H. 10.1016/j.physletb.2012.02.084</bibtext> </blist> <blist> <bibl id="bib7" idref="ref4" type="bt">7</bibl> <bibtext> F. Domingo, G. Weiglein, NMSSM interpretations of the observed Higgs signal. JHEP 04, 095 (2016). arXiv:1509.07283</bibtext> </blist> <blist> <bibl id="bib8" idref="ref5" type="bt">8</bibl> <bibtext> Collaboration OPAL, Abbiendi G. Decay mode independent searches for new scalar bosons with the OPAL detector at LEP. Eur. Phys. J. C. 2003; 27: 311-3292003EPJC...27..311O. 10.1140/epjc/s2002-01115-1</bibtext> </blist> <blist> <bibl id="bib9" idref="ref10" type="bt">9</bibl> <bibtext> LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3, OPAL Collaboration, R. Barate et al., Search for the standard model Higgs boson at LEP. Phys. Lett. B 565, 61–75 (2003). arXiv:hep-ex/0306033</bibtext> </blist> <blist> <bibtext> ALEPH, DELPHI, L3, OPAL, LEP Working Group for Higgs Boson Searches Collaboration, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP. Eur. Phys. J. C 47, 547–587 (2006). arXiv:hep-ex/0602042</bibtext> </blist> <blist> <bibtext> CDF, D0 Collaboration, Tevatron New Physics Higgs Working Group, Updated combination of CDF and D0 searches for standard model Higgs Boson production with up to 10.0 fb-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} of Data (2012). arXiv:1207.0449</bibtext> </blist> <blist> <bibtext> CMS Collaboration, Search for new resonances in the diphoton final state in the mass range between 70 and 110 GeV in pp collisions at s=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=$$\end{document} 8 and 13 TeV, CMS-PAS-HIG-17-013, CERN (2017)</bibtext> </blist> <blist> <bibtext> CMS Collaboration, A.M. Sirunyan et al., Search for a standard model-like Higgs boson in the mass range between 70 and 110 GeV in the diphoton final state in proton-proton collisions at s=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=$$\end{document} 8 and 13 TeV. Phys. Lett. B 793, 320–347 (2019). arXiv:1811.08459</bibtext> </blist> <blist> <bibtext> CMS Collaboration, A.M. Sirunyan et al., Search for additional neutral MSSM Higgs bosons in the ττ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau \tau $$\end{document} final state in proton-proton collisions at s=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=$$\end{document} 13 TeV. JHEP 09, 007 (2018). arXiv:1803.06553</bibtext> </blist> <blist> <bibtext> ATLAS Collaboration, Search for resonances in the 65 to 110 GeV diphoton invariant mass range using 80 fb-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} of pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pp$$\end{document} collisions collected at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=13$$\end{document} TeV with the ATLAS detector, ATLAS-CONF-2018-025 (2018)</bibtext> </blist> <blist> <bibtext> J. Cao, X. Guo, Y. He, P. Wu, Y. Zhang, Diphoton signal of the light Higgs boson in natural NMSSM. Phys. Rev. D 95(11), 116001 (2017). arXiv:1612.08522</bibtext> </blist> <blist> <bibtext> A. Azatov, R. Contino, J. Galloway, Model-independent bounds on a light Higgs. JHEP 04, 127 (2012). arXiv:1202.3415 [Erratum: JHEP 04, 140 (2013)]</bibtext> </blist> <blist> <bibtext> CMS Collaboration, Search for new resonances in the diphoton final state in the mass range between 80 and 115 GeV in pp collisions at s=8\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=8$$\end{document} TeV, CMS-PAS-HIG-14-037 (2015)</bibtext> </blist> <blist> <bibtext> S. Heinemeyer, T. Stefaniak, A Higgs boson at 96 GeV?!. PoS CHARGED2018, 016 (2019). arXiv:1812.05864</bibtext> </blist> <blist> <bibtext> Heinemeyer S. A Higgs boson below 125 GeV?!. Int. J. Mod. Phys. A. 2018; 33; 31: 18440062018IJMPA..3344006H. 10.1142/S0217751X18440062</bibtext> </blist> <blist> <bibtext> P.J. Fox, N. Weiner, Light signals from a lighter Higgs. JHEP 08, 025 (2018). arXiv:1710.07649</bibtext> </blist> <blist> <bibtext> U. Haisch, A. Malinauskas, Let there be light from a second light Higgs doublet. JHEP 03, 135 (2018). arXiv:1712.06599</bibtext> </blist> <blist> <bibtext> F. Richard, Search for a light radion at HL-LHC and ILC250. arXiv:1712.06410</bibtext> </blist> <blist> <bibtext> Liu L, Qiao H, Wang K, Zhu J. A light scalar in the Minimal Dilaton Model in light of the LHC constraints. Chin. Phys. C. 2019; 43; 2: 0231042019ChPhC..43b3104L. 10.1088/1674-1137/43/2/023104</bibtext> </blist> <blist> <bibtext> T. Biekötter, S. Heinemeyer, C. Muñoz, Precise prediction for the Higgs-boson masses in the μν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \nu $$\end{document}SSM. Eur. Phys. J. C 78(6), 504 (2018). arXiv:1712.07475</bibtext> </blist> <blist> <bibtext> F. Domingo, S. Heinemeyer, S. Paßehr, G. Weiglein, Decays of the neutral Higgs bosons into SM fermions and gauge bosons in the CP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\cal C\it }{\cal P\it }$$\end{document}-violating NMSSM. Eur. Phys. J. C 78(11), 942 (2018). arXiv:1807.06322</bibtext> </blist> <blist> <bibtext> W.G. Hollik, S. Liebler, G. Moortgat-Pick, S. Paßehr, G. Weiglein, Phenomenology of the inflation-inspired NMSSM at the electroweak scale. Eur. Phys. J. C 79(1), 75 (2019). arXiv:1809.07371</bibtext> </blist> <blist> <bibtext> Nilles HP. Supersymmetry, supergravity and particle physics. Phys. Rep.. 1984; 110: 1-1621984PhR...110....1N. 10.1016/0370-1573(84)90008-5</bibtext> </blist> <blist> <bibtext> Haber HE, Kane GL. The search for supersymmetry: probing physics beyond the standard model. Phys. Rep.. 1985; 117: 75-2631985PhR...117...75H. 10.1016/0370-1573(85)90051-1</bibtext> </blist> <blist> <bibtext> P. Bechtle, H.E. Haber, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, L. Zeune, The light and heavy Higgs interpretation of the MSSM. Eur. Phys. J. C 77(2), 67 (2017). arXiv:1608.00638</bibtext> </blist> <blist> <bibtext> H. Bahl, E. Fuchs, T. Hahn, S. Heinemeyer, S. Liebler, S. Patel, P. Slavich, T. Stefaniak, C.E.M. Wagner, G. Weiglein, MSSM Higgs boson searches at the LHC: benchmark scenarios for Run 2 and beyond. arXiv:1808.07542</bibtext> </blist> <blist> <bibtext> Ellwanger U, Hugonie C, Teixeira AM. The next-to-minimal supersymmetric standard model. Phys. Rep.. 2010; 496: 1-772010PhR...496....1E2733116. 10.1016/j.physrep.2010.07.001</bibtext> </blist> <blist> <bibtext> Maniatis M. The next-to-minimal supersymmetric extension of the standard model reviewed. Int. J. Mod. Phys. A. 2010; 25: 3505-36022010IJMPA..25.3505M26736421194.81301. 10.1142/S0217751X10049827</bibtext> </blist> <blist> <bibtext> Ellis JR, Gunion JF, Haber HE, Roszkowski L, Zwirner F. Higgs bosons in a nonminimal supersymmetric model. Phys. Rev. D. 1989; 39: 8441989PhRvD..39..844E. 10.1103/PhysRevD.39.844</bibtext> </blist> <blist> <bibtext> Miller DJ, Nevzorov R, Zerwas PM. The Higgs sector of the next-to-minimal supersymmetric standard model. Nucl. Phys. B. 2004; 681: 3-302004NuPhB.681....3M. 10.1016/j.nuclphysb.2003.12.021</bibtext> </blist> <blist> <bibtext> King SF, Muhlleitner M, Nevzorov R. NMSSM Higgs benchmarks near 125 GeV. Nucl. Phys. B. 2012; 860: 207-2442012NuPhB.860..207K1246.81466. 10.1016/j.nuclphysb.2012.02.010</bibtext> </blist> <blist> <bibtext> Lopez-Fogliani DE, Munoz C. Proposal for a supersymmetric standard model. Phys. Rev. Lett.. 2006; 97: 0418012006PhRvL..97d1801L. 10.1103/PhysRevLett.97.041801</bibtext> </blist> <blist> <bibtext> Escudero N, Lopez-Fogliani DE, Munoz C, Ruiz de Austri R. Analysis of the parameter space and spectrum of the mu nu SSM. JHEP. 2008; 12: 0992008JHEP...12..099E. 10.1088/1126-6708/2008/12/099</bibtext> </blist> <blist> <bibtext> Munoz C. Phenomenology of a new supersymmetric standard model: the mu nu SSM. AIP Conf. Proc.. 2010; 1200; 1: 413-4162010AIPC.1200..413M. 10.1063/1.3327603</bibtext> </blist> <blist> <bibtext> C. Muñoz, Searching for SUSY and decaying gravitino dark matter at the LHC and Fermi-LAT with the μν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \nu $$\end{document}SSM. PoS DSU 2015, 034 (2016). arXiv:1608.07912</bibtext> </blist> <blist> <bibtext> Ghosh Pradipta, Lara Iñaki, López-Fogliani Daniel E., Muñoz Carlos, Ruiz de Austri Roberto. Searching for left sneutrino LSP at the LHC. International Journal of Modern Physics A. 2018; 33; 18n19: 18501102018IJMPA..3350110G. 10.1142/S0217751X18501105</bibtext> </blist> <blist> <bibtext> T. Biekötter, S. Heinemeyer, C. Muñoz, Precise prediction for the Higgs-boson masses in the μν\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu \nu $$\end{document}SSM with three right-handed neutrino superfields. arXiv:1906.06173</bibtext> </blist> <blist> <bibtext> Chen C-Y, Freid M, Sher M. Next-to-minimal two Higgs doublet model. Phys. Rev. D. 2014; 89; 7: 0750092014PhRvD..89g5009C. 10.1103/PhysRevD.89.075009</bibtext> </blist> <blist> <bibtext> M. Muhlleitner, M.O.P. Sampaio, R. Santos, J. Wittbrodt, The N2HDM under theoretical and experimental scrutiny. JHEP 03, 094 (2017). arXiv:1612.01309</bibtext> </blist> <blist> <bibtext> Coimbra R, Sampaio MOP, Santos R. ScannerS: constraining the phase diagram of a complex scalar singlet at the LHC. Eur. Phys. J. C. 2013; 73: 24282013EPJC...73.2428C. 10.1140/epjc/s10052-013-2428-4</bibtext> </blist> <blist> <bibtext> K.G. Klimenko, On necessary and sufficient conditions for some Higgs potentials to be bounded from below. Theor. Math. Phys. 62, 58–65 (1985) [Teor. Mat. Fiz. 62, 87 (1985)]</bibtext> </blist> <blist> <bibtext> Drozd A, Grzadkowski B, Gunion JF, Jiang Y. Extending two-Higgs-doublet models by a singlet scalar field–the case for dark matter. JHEP. 2014; 11: 1052014JHEP...11..105D. 10.1007/JHEP11(2014)105</bibtext> </blist> <blist> <bibtext> A. Arbey, F. Mahmoudi, O. Stål, T. Stefaniak, Status of the charged Higgs boson in two Higgs doublet models. Eur. Phys. J. C 78(3), 182 (2018). arXiv:1706.07414</bibtext> </blist> <blist> <bibtext> ATLAS Collaboration, M. Aaboud et al., Search for charged Higgs bosons decaying into top and bottom quarks at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV with the ATLAS detector. JHEP11, 085 (2018). arXiv:1808.03599</bibtext> </blist> <blist> <bibtext> Bechtle P, Brein O, Heinemeyer S, Weiglein G, Williams KE. HiggsBounds: confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron. Comput. Phys. Commun.. 2010; 181: 138-1672010CoPhC.181..138B1205.82001. 10.1016/j.cpc.2009.09.003</bibtext> </blist> <blist> <bibtext> Bechtle P., Brein O., Heinemeyer S., Weiglein G., Williams K.E.. HiggsBounds 2.0.0: Confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and the Tevatron. Computer Physics Communications. 2011; 182; 12: 2605-26312011CoPhC.182.2605B1205.82001. 10.1016/j.cpc.2011.07.015</bibtext> </blist> <blist> <bibtext> Bechtle P, Brein O, Heinemeyer S, Stål O, Stefaniak T, Weiglein G, Williams K. Recent developments in HiggsBounds and a preview of HiggsSignals. PoS CHARGED. 2012; 2012: 024</bibtext> </blist> <blist> <bibtext> Bechtle P, Brein O, Heinemeyer S, Stål O, Stefaniak T, Weiglein G, Williams KE. HiggsBounds-4: improved tests of extended Higgs sectors against exclusion bounds from LEP, the Tevatron and the LHC. Eur. Phys. J. C. 2014; 74; 3: 26932014EPJC...74.2693B. 10.1140/epjc/s10052-013-2693-2</bibtext> </blist> <blist> <bibtext> P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, Applying exclusion likelihoods from LHC searches to extended Higgs sectors. Eur. Phys. J. C 75(9), 421 (2015). arXiv:1507.06706</bibtext> </blist> <blist> <bibtext> Berger EL, Han T, Jiang J, Plehn T. Associated production of a top quark and a charged Higgs boson. Phys. Rev. D. 2005; 71: 1150122005PhRvD..71k5012B. 10.1103/PhysRevD.71.115012</bibtext> </blist> <blist> <bibtext> Flechl M, Klees R, Kramer M, Spira M, Ubiali M. Improved cross-section predictions for heavy charged Higgs boson production at the LHC. Phys. Rev. D. 2015; 91; 7: 0750152015PhRvD..91g5015F. 10.1103/PhysRevD.91.075015</bibtext> </blist> <blist> <bibtext> C. Degrande, M. Ubiali, M. Wiesemann, M. Zaro, Heavy charged Higgs boson production at the LHC. JHEP 10, 145 (2015). arXiv:1507.02549</bibtext> </blist> <blist> <bibtext> LHC Higgs Cross Section Working Group Collaboration, D. de Florian et al., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector. arXiv:1610.07922</bibtext> </blist> <blist> <bibtext> ALEPH, DELPHI, L3, OPAL, LEP Collaboration, G. Abbiendi et al., Search for charged Higgs bosons: combined results using LEP data. Eur. Phys. J. C 73, 2463 (2013). arXiv:1301.6065</bibtext> </blist> <blist> <bibtext> DELPHI Collaboration, J. Abdallah et al., Search for charged Higgs bosons at LEP in general two Higgs doublet models. Eur. Phys. J. C 34, 399–418 (2004). arXiv:hep-ex/0404012</bibtext> </blist> <blist> <bibtext> DELPHI Collaboration, P. Abreu et al., Search for charged Higgs bosons at LEP-2. Phys. Lett. B 460, 484–497 (1999)</bibtext> </blist> <blist> <bibtext> L3 Collaboration, P. Achard et al., Search for charged Higgs bosons at LEP. Phys. Lett. B575, 208–220 (2003). arXiv:hep-ex/0309056</bibtext> </blist> <blist> <bibtext> OPAL Collaboration, G. Abbiendi et al., Search for charged Higgs bosons in e+e-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$e^+e^-$$\end{document} collisions at s=189\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 189$$\end{document}-209 GeV. Eur. Phys. J. C 72, 2076 (2012). arXiv:0812.0267</bibtext> </blist> <blist> <bibtext> Abbiendi et al. G.. Search for Higgs bosons in ${\rm e^+e^-}$ collisions at 183 GeV. The European Physical Journal C. 1999; 7; 3: 407-4351999EPJC....7..407O. 10.1007/s100529901102</bibtext> </blist> <blist> <bibtext> OPAL Collaboration, G. Alexander et al., Search for charged Higgs bosons using the OPAL detector at LEP. Phys. Lett. B 370, 174–184 (1996)</bibtext> </blist> <blist> <bibtext> CMS Collaboration, Search for a pseudoscalar boson A decaying into a Z and an h boson in the llbb final state, CMS-PAS-HIG-14-011 (2014)</bibtext> </blist> <blist> <bibtext> CMS Collaboration, Search for a heavy pseudoscalar boson decaying to a Z boson and a Higgs boson at sqrt(s) = 13 TeV, CMS-PAS-HIG-18-005 (2018)</bibtext> </blist> <blist> <bibtext> ATLAS Collaboration, G. Aad et al., Search for an additional, heavy Higgs boson in the H→ZZ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\rightarrow ZZ$$\end{document} decay channel at s=8TeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s} = 8\; \text{TeV} $$\end{document} in pp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$pp$$\end{document} collision data with the ATLAS detector. Eur. Phys. J. C 76(1), 45 (2016). arXiv:1507.05930</bibtext> </blist> <blist> <bibtext> ATLAS Collaboration, M. Aaboud et al., Search for heavy ZZ resonances in the ℓ+ℓ-ℓ+ℓ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^+\ell ^-\ell ^+\ell ^-$$\end{document} and ℓ+ℓ-νν¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell ^+\ell ^-\nu {\bar{\nu }}$$\end{document} final states using proton–proton collisions at s=13\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}= 13$$\end{document}TeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text{ TeV }$$\end{document} with the ATLAS detector. Eur. Phys. J. C 78(4), 293 (2018). arXiv:1712.06386</bibtext> </blist> <blist> <bibtext> CMS Collaboration, Search for a new scalar resonance decaying to a pair of Z bosons in proton–proton collisions at s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 13 TeV, CMS-PAS-HIG-17-012 (2017)</bibtext> </blist> <blist> <bibtext> CMS Collaboration, Search for H/A decaying into Z+A/H, with Z to ll and A/H to fermion pair, CMS-PAS-HIG-15-001 (2015)</bibtext> </blist> <blist> <bibtext> Harlander RV, Liebler S, Mantler H. SusHi: a program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM. Comput. Phys. Commun.. 2013; 184: 1605-16172013CoPhC.184.1605H1297.81163. 10.1016/j.cpc.2013.02.006</bibtext> </blist> <blist> <bibtext> Harlander Robert V., Liebler Stefan, Mantler Hendrik. SusHi Bento: Beyond NNLO and the heavy- top limit. Computer Physics Communications. 2017; 212: 239-2572017CoPhC.212..239H. 10.1016/j.cpc.2016.10.015</bibtext> </blist> <blist> <bibtext> Djouadi A, Kalinowski J, Spira M. HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension. Comput. Phys. Commun.. 1998; 108: 56-741998CoPhC.108...56D0938.81515. 10.1016/S0010-4655(97)00123-9</bibtext> </blist> <blist> <bibtext> J.M. Butterworth et al., The tools and Monte Carlo Working Group summary report from the Les Houches 2009 workshop on TeV colliders, in Physics at TeV colliders. Proceedings, 6th Workshop, dedicated to Thomas Binoth, Les Houches, June 8–26, 2009 (2010). arXiv:1003.1643</bibtext> </blist> <blist> <bibtext> Bechtle P, Heinemeyer S, Stål O, Stefaniak T, Weiglein G. HiggsSignals\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HiggsSignals$$\end{document}: confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC. Eur. Phys. J. C. 2014; 74; 2: 27112014EPJC...74.2711B. 10.1140/epjc/s10052-013-2711-4</bibtext> </blist> <blist> <bibtext> Stål O, Stefaniak T. Constraining extended Higgs sectors with HiggsSignals. PoS EPS-HEP. 2013; 2013: 314</bibtext> </blist> <blist> <bibtext> Bechtle P, Heinemeyer S, Stål O, Stefaniak T, Weiglein G. Probing the Standard Model with Higgs signal rates from the Tevatron, the LHC and a future ILC. JHEP. 2014; 11: 0392014JHEP...11..039B. 10.1007/JHEP11(2014)039</bibtext> </blist> <blist> <bibtext> See: https://higgsbounds.hepforge.org/downloads.html</bibtext> </blist> <blist> <bibtext> T. Enomoto, R. Watanabe, Flavor constraints on the Two Higgs Doublet Models of Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$_{2}$$\end{document} symmetric and aligned types. JHEP 05, 002 (2016). arXiv:1511.05066</bibtext> </blist> <blist> <bibtext> Ciuchini M, Degrassi G, Gambino P, Giudice GF. Next-to-leading QCD corrections to B→Xsγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B \rightarrow X_s \gamma $$\end{document}: standard model and two Higgs doublet model. Nucl. Phys. B. 1998; 527: 21-431998NuPhB.527...21C. 10.1016/S0550-3213(98)00244-2</bibtext> </blist> <blist> <bibtext> Hermann T, Misiak M, Steinhauser M. B¯→Xsγ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bar{B}}\rightarrow X_s \gamma $$\end{document} in the two Higgs doublet model up to next-to-next-to-leading order in QCD. JHEP. 2012; 11: 0362012JHEP...11..036H. 10.1007/JHEP11(2012)036</bibtext> </blist> <blist> <bibtext> M. Misiak et al., Updated NNLO QCD predictions for the weak radiative B-meson decays. Phys. Rev. Lett. 114(22), 221801 (2015). arXiv:1503.01789</bibtext> </blist> <blist> <bibtext> Buras AJ, Krawczyk P, Lautenbacher ME, Salazar C. B0-anti-B0 mixing, CP violation, K+→π+νν¯\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$K^+ \rightarrow \pi ^+ \nu {\bar{\nu }}$$\end{document} and B→KγX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B \rightarrow K \gamma X$$\end{document} in a two Higgs doublet model. Nucl. Phys. B. 1990; 337: 284-3121990NuPhB.337..284B. 10.1016/0550-3213(90)90274-H</bibtext> </blist> <blist> <bibtext> Barger VD, Hewett JL, Phillips RJN. New constraints on the charged Higgs sector in two Higgs doublet models. Phys. Rev. D. 1990; 41: 3421-34411990PhRvD..41.3421B. 10.1103/PhysRevD.41.3421</bibtext> </blist> <blist> <bibtext> Q. Chang, P.-F. Li, X.-Q. Li, Bs0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${B_s^0}$$\end{document}–B¯s0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\bar{B}}}_s^0$$\end{document} mixing within minimal flavor-violating two-Higgs-doublet models. Eur. Phys. J. C 75(12), 594 (2015). arXiv:1505.03650</bibtext> </blist> <blist> <bibtext> Li X-Q, Lu J, Pich A. Bs,d0→ℓ+ℓ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_{s, d}^0 \rightarrow \ell ^+\ell ^-$$\end{document} decays in the aligned two-Higgs-doublet model. JHEP. 2014; 06: 0222014JHEP...06..022L</bibtext> </blist> <blist> <bibtext> X.-D. Cheng, Y.-D. Yang, X.-B. Yuan, Revisiting Bs→μ+μ-\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_s \rightarrow \mu ^+\mu ^-$$\end{document} in the two-Higgs doublet models with Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Z_2$$\end{document} symmetry. Eur. Phys. J. C 76(3), 151 (2016). arXiv:1511.01829</bibtext> </blist> <blist> <bibtext> Peskin ME, Takeuchi T. A new constraint on a strongly interacting Higgs sector. Phys. Rev. Lett.. 1990; 65: 964-9671990PhRvL..65..964P. 10.1103/PhysRevLett.65.964</bibtext> </blist> <blist> <bibtext> Peskin ME, Takeuchi T. Estimation of oblique electroweak corrections. Phys. Rev. D. 1992; 46: 381-4091992PhRvD..46..381P. 10.1103/PhysRevD.46.381</bibtext> </blist> <blist> <bibtext> Grimus W, Lavoura L, Ogreid OM, Osland P. The oblique parameters in multi-Higgs-doublet models. Nucl. Phys. B. 2008; 801: 81-962008NuPhB.801...81G1189.81254. 10.1016/j.nuclphysb.2008.04.019</bibtext> </blist> <blist> <bibtext> Bertolini S. Quantum effects in a two Higgs doublet model of the electroweak interactions. Nucl. Phys. B. 1986; 272: 77-981986NuPhB.272...77B. 10.1016/0550-3213(86)90341-X</bibtext> </blist> <blist> <bibtext> Hollik W. Nonstandard Higgs bosons in SU(2) X U(1) radiative corrections. Z. Phys. C. 1986; 32: 2911986ZPhyC..32..291H. 10.1007/BF01552507</bibtext> </blist> <blist> <bibtext> Funk G, O'Neil D, Winters RM. What the oblique parameters S, T, and U and their extensions reveal about the 2HDM: a numerical analysis. Int. J. Mod. Phys. A. 2012; 27: 12500212012IJMPA..2750021F1247.81622. 10.1142/S0217751X12500212</bibtext> </blist> <blist> <bibtext> S. Gascon-Shotkin, Update on Higgs searches below 125 GeV. Higgs Days at Sandander (2017). https://indico.cern.ch/event/666384/contributions/2723427/</bibtext> </blist> <blist> <bibtext> LHC Higgs Cross Section Working Group Collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties. arXiv:1307.1347</bibtext> </blist> <blist> <bibtext> ATLAS Collaboration, Combined measurements of Higgs boson production and decay using up to 80 fb-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{-1}$$\end{document} of proton–proton collision data at s=\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=$$\end{document} 13 TeV collected with the ATLAS experiment, ATLAS-CONF-2018-031 (2018)</bibtext> </blist> <blist> <bibtext> CMS Collaboration, A.M. Sirunyan et al., Combined measurements of Higgs boson couplings in proton–proton collisions at s=13TeV\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}=13\,\text{ Te }\text{ V } $$\end{document}. Eur. Phys. J. C 79(5), 421 (2019). arXiv:1809.10733</bibtext> </blist> <blist> <bibtext> S. Dawson et al., Working Group Report: Higgs boson, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA, July 29–August 6, 2013 (2013). arXiv:1310.8361</bibtext> </blist> <blist> <bibtext> P. Drechsel, G. Moortgat-Pick, G. Weiglein, Sensitivity of the ILC to light Higgs masses, as updated during Workshop Opportunities at Future High Energy Colliders Madrid, Spain, July 5 (2019). arXiv:1801.09662, https://indico.cern.ch/event/773621/contributions/3451029/</bibtext> </blist> <blist> <bibtext> CMS Collaboration, Projected performance of an upgraded CMS detector at the LHC and HL-LHC: contribution to the snowmass process, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA, July 29–August 6, 2013 (2013). arXiv:1307.7135</bibtext> </blist> <blist> <bibtext> CMS, ATLAS Collaboration, A. Tricomi, Prospects of the high luminosity LHC from ATLAS and CMS. PoS EPS-HEP 2015, 121 (2015)</bibtext> </blist> <blist> <bibtext> ATLAS Collaboration, Projections for measurements of Higgs boson signal strengths and coupling parameters with the ATLAS detector at a HL-LHC, ATL-PHYS-PUB-2014-016 (2014)</bibtext> </blist> <blist> <bibtext> M. Slawinska, High-luminosity LHC prospects with the upgraded ATLAS detector. PoS DIS 2016, 266 (2016). arXiv:1609.08434</bibtext> </blist> <blist> <bibtext> D.M. Asner et al., ILC Higgs White Paper, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013): Minneapolis, MN, USA, July 29–August 6, 2013 (2013). arXiv:1310.0763</bibtext> </blist> <blist> <bibtext> Ono H, Miyamoto A. A study of measurement precision of the Higgs boson branching ratios at the International Linear Collider. Eur. Phys. J. C. 2013; 73; 3: 23432013EPJC...73.2343O. 10.1140/epjc/s10052-013-2343-8</bibtext> </blist> <blist> <bibtext> C. Dürig, K. Fujii, J. List, J. Tian, Model Independent Determination of HWW\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$HWW$$\end{document} coupling and Higgs total width at ILC, in International Workshop on Future Linear Colliders (LCWS13) Tokyo, Japan, November 11–15 2013 (2014). arXiv:1403.7734</bibtext> </blist> <blist> <bibtext> K. Fujii et al., Physics case for the 250 GeV stage of the international linear collider. arXiv:1710.07621</bibtext> </blist> <blist> <bibtext> P. Bambade et al., The international linear collider: a global project. arXiv:1903.01629</bibtext> </blist> <blist> <bibtext> Physics of the HL-LHC Working Group Collaboration, M. Cepeda et al., Higgs physics at the HL-LHC and HE-LHC. arXiv:1902.00134</bibtext> </blist> <blist> <bibtext> M. Guchait, A.H. Vijay, Probing heavy charged Higgs boson at the LHC. Phys. Rev. D 98(11), 115028 (2018). arXiv:1806.01317</bibtext> </blist> <blist> <bibtext> Y. Wang, J. List, M. Berggren, Search for light scalars produced in association with muon pairs for s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{s}$$\end{document} = 250 GeV at the ILC, in International Workshop on Future Linear Collider (LCWS2017) Strasbourg, France, October 23–27, 2017 (2018). arXiv:1801.08164</bibtext> </blist> </ref> <ref id="AN0141768308-22"> <title> Footnotes </title> <blist> <bibtext> We have compared the results to Ref. [[47]], where slightly differently conditions on the vacuum stability are given. We did not observe any relevant impact on the phenomenology of our scenario applying the results of Ref. [[47]].</bibtext> </blist> <blist> <bibtext> We thank T. Stefaniak for a program to extract the prediction from the grid provided by the LHC Higgs Cross Section Working Group.</bibtext> </blist> <blist> <bibtext> Similar results can be obtained for CLIC, FCC-ee and CEPC. We will focus on the ILC prospects here using the results of Ref. [[100]].</bibtext> </blist> <blist> <bibtext> Here one has to keep in mind the theory input required in the (HL-)LHC analysis.</bibtext> </blist> </ref> <aug> <p>By T. Biekötter; M. Chakraborti and S. Heinemeyer</p> <p>Reported by Author; Author; Author</p> </aug> <nolink nlid="nl1" bibid="bib10" firstref="ref6"></nolink> <nolink nlid="nl2" bibid="bib11" firstref="ref7"></nolink> <nolink nlid="nl3" bibid="bib12" firstref="ref8"></nolink> <nolink nlid="nl4" bibid="bib15" firstref="ref9"></nolink> <nolink nlid="nl5" bibid="bib16" firstref="ref11"></nolink> <nolink nlid="nl6" bibid="bib17" firstref="ref12"></nolink> <nolink nlid="nl7" bibid="bib13" firstref="ref13"></nolink> <nolink nlid="nl8" bibid="bib18" firstref="ref14"></nolink> <nolink nlid="nl9" bibid="bib19" firstref="ref16"></nolink> <nolink nlid="nl10" bibid="bib21" firstref="ref18"></nolink> <nolink nlid="nl11" bibid="bib23" firstref="ref19"></nolink> <nolink nlid="nl12" bibid="bib24" firstref="ref20"></nolink> <nolink nlid="nl13" bibid="bib25" firstref="ref21"></nolink> <nolink nlid="nl14" bibid="bib27" firstref="ref22"></nolink> <nolink nlid="nl15" bibid="bib42" firstref="ref23"></nolink> <nolink nlid="nl16" bibid="bib28" firstref="ref24"></nolink> <nolink nlid="nl17" bibid="bib30" firstref="ref26"></nolink> <nolink nlid="nl18" bibid="bib32" firstref="ref28"></nolink> <nolink nlid="nl19" bibid="bib34" firstref="ref29"></nolink> <nolink nlid="nl20" bibid="bib36" firstref="ref31"></nolink> <nolink nlid="nl21" bibid="bib26" firstref="ref32"></nolink> <nolink nlid="nl22" bibid="bib37" firstref="ref33"></nolink> <nolink nlid="nl23" bibid="bib39" firstref="ref34"></nolink> <nolink nlid="nl24" bibid="bib41" firstref="ref35"></nolink> <nolink nlid="nl25" bibid="bib43" firstref="ref39"></nolink> <nolink nlid="nl26" bibid="bib44" firstref="ref41"></nolink> <nolink nlid="nl27" bibid="bib46" firstref="ref44"></nolink> <nolink nlid="nl28" bibid="bib45" firstref="ref46"></nolink> <nolink nlid="nl29" bibid="bib48" firstref="ref48"></nolink> <nolink nlid="nl30" bibid="bib49" firstref="ref49"></nolink> <nolink nlid="nl31" bibid="bib50" firstref="ref50"></nolink> <nolink nlid="nl32" bibid="bib54" firstref="ref51"></nolink> <nolink nlid="nl33" bibid="bib55" firstref="ref52"></nolink> <nolink nlid="nl34" bibid="bib58" firstref="ref53"></nolink> <nolink nlid="nl35" bibid="bib59" firstref="ref56"></nolink> <nolink nlid="nl36" bibid="bib65" firstref="ref57"></nolink> <nolink nlid="nl37" bibid="bib66" firstref="ref58"></nolink> <nolink nlid="nl38" bibid="bib68" firstref="ref59"></nolink> <nolink nlid="nl39" bibid="bib70" firstref="ref60"></nolink> <nolink nlid="nl40" bibid="bib71" firstref="ref61"></nolink> <nolink nlid="nl41" bibid="bib14" firstref="ref62"></nolink> <nolink nlid="nl42" bibid="bib72" firstref="ref70"></nolink> <nolink nlid="nl43" bibid="bib74" firstref="ref72"></nolink> <nolink nlid="nl44" bibid="bib76" firstref="ref74"></nolink> <nolink nlid="nl45" bibid="bib78" firstref="ref75"></nolink> <nolink nlid="nl46" bibid="bib79" firstref="ref76"></nolink> <nolink nlid="nl47" bibid="bib80" firstref="ref78"></nolink> <nolink nlid="nl48" bibid="bib81" firstref="ref80"></nolink> <nolink nlid="nl49" bibid="bib83" firstref="ref81"></nolink> <nolink nlid="nl50" bibid="bib84" firstref="ref82"></nolink> <nolink nlid="nl51" bibid="bib86" firstref="ref83"></nolink> <nolink nlid="nl52" bibid="bib87" firstref="ref86"></nolink> <nolink nlid="nl53" bibid="bib89" firstref="ref88"></nolink> <nolink nlid="nl54" bibid="bib91" firstref="ref89"></nolink> <nolink nlid="nl55" bibid="bib92" firstref="ref90"></nolink> <nolink nlid="nl56" bibid="bib94" firstref="ref91"></nolink> <nolink nlid="nl57" bibid="bib95" firstref="ref95"></nolink> <nolink nlid="nl58" bibid="bib96" firstref="ref96"></nolink> <nolink nlid="nl59" bibid="bib97" firstref="ref108"></nolink> <nolink nlid="nl60" bibid="bib99" firstref="ref109"></nolink> <nolink nlid="nl61" bibid="bib101" firstref="ref113"></nolink> <nolink nlid="nl62" bibid="bib104" firstref="ref114"></nolink> <nolink nlid="nl63" bibid="bib105" firstref="ref116"></nolink> <nolink nlid="nl64" bibid="bib110" firstref="ref117"></nolink> <nolink nlid="nl65" bibid="bib109" firstref="ref118"></nolink> <nolink nlid="nl66" bibid="bib98" firstref="ref121"></nolink> <nolink nlid="nl67" bibid="bib111" firstref="ref129"></nolink> <nolink nlid="nl68" bibid="bib100" firstref="ref131"></nolink> <nolink nlid="nl69" bibid="bib112" firstref="ref133"></nolink>
CustomLinks:
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=14346044&ISBN=&volume=80&issue=1&date=20200101&spage=1&pages=1-23&title=European Physical Journal C: Particles and Fields&atitle=A%2096%20GeV%20Higgs%20boson%20in%20the%20N2HDM&aulast=T.%20Biek%C3%B6tter&id=DOI:10.1140/epjc/s10052-019-7561-2
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/5b7f44d989684127b28f454b653f4ac5
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.5b7f44d989684127b28f454b653f4ac5
RelevancyScore: 930
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 930.017944335938
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: A 96 GeV Higgs boson in the N2HDM
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22T%2E+Biekötter%22">T. Biekötter</searchLink><br /><searchLink fieldCode="AR" term="%22M%2E+Chakraborti%22">M. Chakraborti</searchLink><br /><searchLink fieldCode="AR" term="%22S%2E+Heinemeyer%22">S. Heinemeyer</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: European Physical Journal C: Particles and Fields, Vol 80, Iss 1, Pp 1-23 (2020)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: SpringerOpen, 2020.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2020
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Astrophysics<br />LCC:Nuclear and particle physics. Atomic energy. Radioactivity
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Astrophysics%22">Astrophysics</searchLink><br /><searchLink fieldCode="DE" term="%22QB460-466%22">QB460-466</searchLink><br /><searchLink fieldCode="DE" term="%22Nuclear+and+particle+physics%2E+Atomic+energy%2E+Radioactivity%22">Nuclear and particle physics. Atomic energy. Radioactivity</searchLink><br /><searchLink fieldCode="DE" term="%22QC770-798%22">QC770-798</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Abstract We discuss a $$\sim 3\,\sigma $$ ∼3σ signal (local) in the light Higgs-boson search in the diphoton decay mode at $$\sim 96 \,\, \mathrm {GeV}$$ ∼96GeV as reported by CMS, together with a $$\sim 2\,\sigma $$ ∼2σ excess (local) in the $$b {{\bar{b}}}$$ bb¯ final state at LEP in the same mass range. We interpret this possible signal as a Higgs boson in the 2 Higgs Doublet Model with an additional real Higgs singlet (N2HDM). We find that the lightest Higgs boson of the N2HDM can perfectly fit both excesses simultaneously, while the second lightest state is in full agreement with the Higgs-boson measurements at $$125 \,\, \mathrm {GeV}$$ 125GeV , and the full Higgs-boson sector is in agreement with all Higgs exclusion bounds from LEP, the Tevatron and the LHC as well as other theoretical and experimental constraints. We show that only the N2HDM type II and IV can fit both the LEP excess and the CMS excess with a large ggF production component at $$\sim 96 \,\, \mathrm {GeV}$$ ∼96GeV . We derive bounds on the N2HDM Higgs sector from a fit to both excesses and describe how this signal can be further analyzed at the LHC and at future $$e^+e^-$$ e+e- colliders, such as the ILC.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 1434-6044<br />1434-6052
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://doaj.org/toc/1434-6044; https://doaj.org/toc/1434-6052
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1140/epjc/s10052-019-7561-2
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/5b7f44d989684127b28f454b653f4ac5" linkWindow="_blank">https://doaj.org/article/5b7f44d989684127b28f454b653f4ac5</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.5b7f44d989684127b28f454b653f4ac5
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.5b7f44d989684127b28f454b653f4ac5
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1140/epjc/s10052-019-7561-2
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 23
        StartPage: 1
    Subjects:
      – SubjectFull: Astrophysics
        Type: general
      – SubjectFull: QB460-466
        Type: general
      – SubjectFull: Nuclear and particle physics. Atomic energy. Radioactivity
        Type: general
      – SubjectFull: QC770-798
        Type: general
    Titles:
      – TitleFull: A 96 GeV Higgs boson in the N2HDM
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: T. Biekötter
      – PersonEntity:
          Name:
            NameFull: M. Chakraborti
      – PersonEntity:
          Name:
            NameFull: S. Heinemeyer
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2020
          Identifiers:
            – Type: issn-print
              Value: 14346044
            – Type: issn-print
              Value: 14346052
          Numbering:
            – Type: volume
              Value: 80
            – Type: issue
              Value: 1
          Titles:
            – TitleFull: European Physical Journal C: Particles and Fields
              Type: main
ResultId 1