Deep Reinforcement Learning for Router Selection in Network With Heavy Traffic

Bibliographic Details
Title: Deep Reinforcement Learning for Router Selection in Network With Heavy Traffic
Authors: Ruijin Ding, Yadong Xu, Feifei Gao, Xuemin Shen, Wen Wu
Source: IEEE Access, Vol 7, Pp 37109-37120 (2019)
Publisher Information: IEEE, 2019.
Publication Year: 2019
Collection: LCC:Electrical engineering. Electronics. Nuclear engineering
Subject Terms: Deep reinforcement learning, routing, network congestion, network throughput, deep Q network, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
More Details: The rapid development of wireless communications brings a tremendous increase in the amount number of data streams and poses significant challenges to the traditional routing protocols. In this paper, we leverage deep reinforcement learning (DRL) for router selection in the network with heavy traffic, aiming at reducing the network congestion and the length of the data transmission path. We first illustrate the challenges of the existing routing protocols when the amount of the data explodes. We then utilize the Markov decision process (RSMDP) to formulate the routing problem. Two novel deep Q network (DQN)-based algorithms are designed to reduce the network congestion probability with a short transmission path: one focusing on reducing the congestion probability; while the other focuses on shortening the transmission path. The simulation results demonstrate that the proposed algorithms can achieve higher network throughput comparing to existing routing algorithms in heavy network traffic scenarios.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2169-3536
Relation: https://ieeexplore.ieee.org/document/8673947/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2019.2904539
Access URL: https://doaj.org/article/5acc798d4a2b4d828859c18801026f36
Accession Number: edsdoj.5acc798d4a2b4d828859c18801026f36
Database: Directory of Open Access Journals
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://login.libproxy.scu.edu/login?url=http://ieeexplore.ieee.org/search/searchresult.jsp?action=search&newsearch=true&queryText=%22DOI%22:10.1109/ACCESS.2019.2904539
    Name: EDS - IEEE (s8985755)
    Category: fullText
    Text: Check IEEE Xplore for full text
    MouseOverText: Check IEEE Xplore for full text. A new window will open.
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=21693536&ISBN=&volume=7&issue=&date=20190101&spage=37109&pages=37109-37120&title=IEEE Access&atitle=Deep%20Reinforcement%20Learning%20for%20Router%20Selection%20in%20Network%20With%20Heavy%20Traffic&aulast=Ruijin%20Ding&id=DOI:10.1109/ACCESS.2019.2904539
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/5acc798d4a2b4d828859c18801026f36
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.5acc798d4a2b4d828859c18801026f36
RelevancyScore: 918
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 917.664306640625
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Deep Reinforcement Learning for Router Selection in Network With Heavy Traffic
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Ruijin+Ding%22">Ruijin Ding</searchLink><br /><searchLink fieldCode="AR" term="%22Yadong+Xu%22">Yadong Xu</searchLink><br /><searchLink fieldCode="AR" term="%22Feifei+Gao%22">Feifei Gao</searchLink><br /><searchLink fieldCode="AR" term="%22Xuemin+Shen%22">Xuemin Shen</searchLink><br /><searchLink fieldCode="AR" term="%22Wen+Wu%22">Wen Wu</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: IEEE Access, Vol 7, Pp 37109-37120 (2019)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: IEEE, 2019.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2019
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Electrical engineering. Electronics. Nuclear engineering
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Deep+reinforcement+learning%22">Deep reinforcement learning</searchLink><br /><searchLink fieldCode="DE" term="%22routing%22">routing</searchLink><br /><searchLink fieldCode="DE" term="%22network+congestion%22">network congestion</searchLink><br /><searchLink fieldCode="DE" term="%22network+throughput%22">network throughput</searchLink><br /><searchLink fieldCode="DE" term="%22deep+Q+network%22">deep Q network</searchLink><br /><searchLink fieldCode="DE" term="%22Electrical+engineering%2E+Electronics%2E+Nuclear+engineering%22">Electrical engineering. Electronics. Nuclear engineering</searchLink><br /><searchLink fieldCode="DE" term="%22TK1-9971%22">TK1-9971</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: The rapid development of wireless communications brings a tremendous increase in the amount number of data streams and poses significant challenges to the traditional routing protocols. In this paper, we leverage deep reinforcement learning (DRL) for router selection in the network with heavy traffic, aiming at reducing the network congestion and the length of the data transmission path. We first illustrate the challenges of the existing routing protocols when the amount of the data explodes. We then utilize the Markov decision process (RSMDP) to formulate the routing problem. Two novel deep Q network (DQN)-based algorithms are designed to reduce the network congestion probability with a short transmission path: one focusing on reducing the congestion probability; while the other focuses on shortening the transmission path. The simulation results demonstrate that the proposed algorithms can achieve higher network throughput comparing to existing routing algorithms in heavy network traffic scenarios.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2169-3536
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://ieeexplore.ieee.org/document/8673947/; https://doaj.org/toc/2169-3536
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1109/ACCESS.2019.2904539
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/5acc798d4a2b4d828859c18801026f36" linkWindow="_blank">https://doaj.org/article/5acc798d4a2b4d828859c18801026f36</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.5acc798d4a2b4d828859c18801026f36
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.5acc798d4a2b4d828859c18801026f36
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/ACCESS.2019.2904539
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 12
        StartPage: 37109
    Subjects:
      – SubjectFull: Deep reinforcement learning
        Type: general
      – SubjectFull: routing
        Type: general
      – SubjectFull: network congestion
        Type: general
      – SubjectFull: network throughput
        Type: general
      – SubjectFull: deep Q network
        Type: general
      – SubjectFull: Electrical engineering. Electronics. Nuclear engineering
        Type: general
      – SubjectFull: TK1-9971
        Type: general
    Titles:
      – TitleFull: Deep Reinforcement Learning for Router Selection in Network With Heavy Traffic
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Ruijin Ding
      – PersonEntity:
          Name:
            NameFull: Yadong Xu
      – PersonEntity:
          Name:
            NameFull: Feifei Gao
      – PersonEntity:
          Name:
            NameFull: Xuemin Shen
      – PersonEntity:
          Name:
            NameFull: Wen Wu
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2019
          Identifiers:
            – Type: issn-print
              Value: 21693536
          Numbering:
            – Type: volume
              Value: 7
          Titles:
            – TitleFull: IEEE Access
              Type: main
ResultId 1