An intelligent system control method based on visual sensor

Bibliographic Details
Title: An intelligent system control method based on visual sensor
Authors: Haijun Diao, Lina Yin, Bin Liang, Yanyan Chen
Source: Measurement: Sensors, Vol 29, Iss , Pp 100857- (2023)
Publisher Information: Elsevier, 2023.
Publication Year: 2023
Collection: LCC:Electric apparatus and materials. Electric circuits. Electric networks
Subject Terms: Visual sensors, Intelligent systems, Convolutional neural network, Video representation learning, Electric apparatus and materials. Electric circuits. Electric networks, TK452-454.4
More Details: In order to solve the complexity problem caused by the uncertainty of control system models, this paper utilizes visual sensors and intelligent control technology, and uses data-driven machine learning algorithms to extract representations from the original video for video representation learning, providing crucial semantic features for related tasks. Convolutional Neural Network (CNN) greatly improves the utilization efficiency of visual data and model performance, and realizes the recognition of complex application scenarios. In this paper, an intelligent system control method of time-domain vision sensor is proposed. The proposed method locate, track and measure the speed of moving objects based on CNN and image acquisition device, Asynchronous Temporal Vision Sensor (ATVS). The experimental results show that our proposed algorithm has improved its overall performance through video feature learning and clustering. It not only pays more attention to video spatial information to enhance the discrimination ability of learned video representations, such as scenes and objects, but also improves the tracking performance of visual sensors under various interference attributes.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2665-9174
Relation: http://www.sciencedirect.com/science/article/pii/S2665917423001939; https://doaj.org/toc/2665-9174
DOI: 10.1016/j.measen.2023.100857
Access URL: https://doaj.org/article/56921cbee0784a3c8a731564fccc0c2c
Accession Number: edsdoj.56921cbee0784a3c8a731564fccc0c2c
Database: Directory of Open Access Journals
FullText Links:
  – Type: other
    Url: https://resolver.ebsco.com:443/public/rma-ftfapi/ejs/direct?AccessToken=435EA1F28590CC325547&Show=Object
Text:
  Availability: 0
CustomLinks:
  – Url: https://www.doi.org/10.1016/j.measen.2023.100857?
    Name: ScienceDirect (all content)-s8985755
    Category: fullText
    Text: View record from ScienceDirect
    MouseOverText: View record from ScienceDirect
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=26659174&ISBN=&volume=29&issue=100857-&date=20231001&spage=&pages=&title=Measurement: Sensors&atitle=An%20intelligent%20system%20control%20method%20based%20on%20visual%20sensor&aulast=Haijun%20Diao&id=DOI:10.1016/j.measen.2023.100857
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/56921cbee0784a3c8a731564fccc0c2c
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.56921cbee0784a3c8a731564fccc0c2c
RelevancyScore: 975
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 975.269348144531
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: An intelligent system control method based on visual sensor
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Haijun+Diao%22">Haijun Diao</searchLink><br /><searchLink fieldCode="AR" term="%22Lina+Yin%22">Lina Yin</searchLink><br /><searchLink fieldCode="AR" term="%22Bin+Liang%22">Bin Liang</searchLink><br /><searchLink fieldCode="AR" term="%22Yanyan+Chen%22">Yanyan Chen</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Measurement: Sensors, Vol 29, Iss , Pp 100857- (2023)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Elsevier, 2023.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2023
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Electric apparatus and materials. Electric circuits. Electric networks
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Visual+sensors%22">Visual sensors</searchLink><br /><searchLink fieldCode="DE" term="%22Intelligent+systems%22">Intelligent systems</searchLink><br /><searchLink fieldCode="DE" term="%22Convolutional+neural+network%22">Convolutional neural network</searchLink><br /><searchLink fieldCode="DE" term="%22Video+representation+learning%22">Video representation learning</searchLink><br /><searchLink fieldCode="DE" term="%22Electric+apparatus+and+materials%2E+Electric+circuits%2E+Electric+networks%22">Electric apparatus and materials. Electric circuits. Electric networks</searchLink><br /><searchLink fieldCode="DE" term="%22TK452-454%2E4%22">TK452-454.4</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: In order to solve the complexity problem caused by the uncertainty of control system models, this paper utilizes visual sensors and intelligent control technology, and uses data-driven machine learning algorithms to extract representations from the original video for video representation learning, providing crucial semantic features for related tasks. Convolutional Neural Network (CNN) greatly improves the utilization efficiency of visual data and model performance, and realizes the recognition of complex application scenarios. In this paper, an intelligent system control method of time-domain vision sensor is proposed. The proposed method locate, track and measure the speed of moving objects based on CNN and image acquisition device, Asynchronous Temporal Vision Sensor (ATVS). The experimental results show that our proposed algorithm has improved its overall performance through video feature learning and clustering. It not only pays more attention to video spatial information to enhance the discrimination ability of learned video representations, such as scenes and objects, but also improves the tracking performance of visual sensors under various interference attributes.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2665-9174
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: http://www.sciencedirect.com/science/article/pii/S2665917423001939; https://doaj.org/toc/2665-9174
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1016/j.measen.2023.100857
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/56921cbee0784a3c8a731564fccc0c2c" linkWindow="_blank">https://doaj.org/article/56921cbee0784a3c8a731564fccc0c2c</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.56921cbee0784a3c8a731564fccc0c2c
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.56921cbee0784a3c8a731564fccc0c2c
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1016/j.measen.2023.100857
    Languages:
      – Text: English
    Subjects:
      – SubjectFull: Visual sensors
        Type: general
      – SubjectFull: Intelligent systems
        Type: general
      – SubjectFull: Convolutional neural network
        Type: general
      – SubjectFull: Video representation learning
        Type: general
      – SubjectFull: Electric apparatus and materials. Electric circuits. Electric networks
        Type: general
      – SubjectFull: TK452-454.4
        Type: general
    Titles:
      – TitleFull: An intelligent system control method based on visual sensor
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Haijun Diao
      – PersonEntity:
          Name:
            NameFull: Lina Yin
      – PersonEntity:
          Name:
            NameFull: Bin Liang
      – PersonEntity:
          Name:
            NameFull: Yanyan Chen
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 10
              Type: published
              Y: 2023
          Identifiers:
            – Type: issn-print
              Value: 26659174
          Numbering:
            – Type: volume
              Value: 29
            – Type: issue
              Value: 100857-
          Titles:
            – TitleFull: Measurement: Sensors
              Type: main
ResultId 1