A unified framework for exploring time-varying volumetric data based on block correspondence

Bibliographic Details
Title: A unified framework for exploring time-varying volumetric data based on block correspondence
Authors: Kecheng Lu, Chaoli Wang, Keqin Wu, Minglun Gong, Yunhai Wang
Source: Visual Informatics, Vol 3, Iss 4, Pp 157-165 (2019)
Publisher Information: Elsevier, 2019.
Publication Year: 2019
Collection: LCC:Information technology
Subject Terms: Information technology, T58.5-58.64
More Details: Effective exploration of spatiotemporal volumetric data sets remains a key challenge in scientific visualization. Although great advances have been made over the years, existing solutions typically focus on only one or two aspects of data analysis and visualization. A streamlined workflow for analyzing time-varying data in a comprehensive and unified manner is still missing. Towards this goal, we present a novel approach for time-varying data visualization that encompasses keyframe identification, feature extraction and tracking under a single, unified framework. At the heart of our approach lies in the GPU-accelerated BlockMatch method, a dense block correspondence technique that extends the PatchMatch method from 2D pixels to 3D voxels. Based on the results of dense correspondence, we are able to identify keyframes from the time sequence using k-medoids clustering along with a bidirectional similarity measure. Furthermore, in conjunction with the graph cut algorithm, this framework enables us to perform fine-grained feature extraction and tracking. We tested our approach using several time-varying data sets to demonstrate its effectiveness and utility. Keywords: Time-varying data visualization, Block correspondence, Feature extraction and tracking
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2468-502X
Relation: http://www.sciencedirect.com/science/article/pii/S2468502X19300464; https://doaj.org/toc/2468-502X
DOI: 10.1016/j.visinf.2019.10.001
Access URL: https://doaj.org/article/53933c09e69d4c4188748914c411dae3
Accession Number: edsdoj.53933c09e69d4c4188748914c411dae3
Database: Directory of Open Access Journals
FullText Links:
  – Type: other
    Url: https://resolver.ebsco.com:443/public/rma-ftfapi/ejs/direct?AccessToken=469EA2EF2B8D36148005&Show=Object
Text:
  Availability: 0
CustomLinks:
  – Url: https://www.doi.org/10.1016/j.visinf.2019.10.001?
    Name: ScienceDirect (all content)-s8985755
    Category: fullText
    Text: View record from ScienceDirect
    MouseOverText: View record from ScienceDirect
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=2468502X&ISBN=&volume=3&issue=4&date=20191201&spage=157&pages=157-165&title=Visual Informatics&atitle=A%20unified%20framework%20for%20exploring%20time-varying%20volumetric%20data%20based%20on%20block%20correspondence&aulast=Kecheng%20Lu&id=DOI:10.1016/j.visinf.2019.10.001
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/53933c09e69d4c4188748914c411dae3
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.53933c09e69d4c4188748914c411dae3
RelevancyScore: 929
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 928.834228515625
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: A unified framework for exploring time-varying volumetric data based on block correspondence
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Kecheng+Lu%22">Kecheng Lu</searchLink><br /><searchLink fieldCode="AR" term="%22Chaoli+Wang%22">Chaoli Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Keqin+Wu%22">Keqin Wu</searchLink><br /><searchLink fieldCode="AR" term="%22Minglun+Gong%22">Minglun Gong</searchLink><br /><searchLink fieldCode="AR" term="%22Yunhai+Wang%22">Yunhai Wang</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Visual Informatics, Vol 3, Iss 4, Pp 157-165 (2019)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Elsevier, 2019.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2019
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Information technology
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Information+technology%22">Information technology</searchLink><br /><searchLink fieldCode="DE" term="%22T58%2E5-58%2E64%22">T58.5-58.64</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Effective exploration of spatiotemporal volumetric data sets remains a key challenge in scientific visualization. Although great advances have been made over the years, existing solutions typically focus on only one or two aspects of data analysis and visualization. A streamlined workflow for analyzing time-varying data in a comprehensive and unified manner is still missing. Towards this goal, we present a novel approach for time-varying data visualization that encompasses keyframe identification, feature extraction and tracking under a single, unified framework. At the heart of our approach lies in the GPU-accelerated BlockMatch method, a dense block correspondence technique that extends the PatchMatch method from 2D pixels to 3D voxels. Based on the results of dense correspondence, we are able to identify keyframes from the time sequence using k-medoids clustering along with a bidirectional similarity measure. Furthermore, in conjunction with the graph cut algorithm, this framework enables us to perform fine-grained feature extraction and tracking. We tested our approach using several time-varying data sets to demonstrate its effectiveness and utility. Keywords: Time-varying data visualization, Block correspondence, Feature extraction and tracking
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2468-502X
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: http://www.sciencedirect.com/science/article/pii/S2468502X19300464; https://doaj.org/toc/2468-502X
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1016/j.visinf.2019.10.001
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/53933c09e69d4c4188748914c411dae3" linkWindow="_blank">https://doaj.org/article/53933c09e69d4c4188748914c411dae3</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.53933c09e69d4c4188748914c411dae3
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.53933c09e69d4c4188748914c411dae3
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1016/j.visinf.2019.10.001
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 9
        StartPage: 157
    Subjects:
      – SubjectFull: Information technology
        Type: general
      – SubjectFull: T58.5-58.64
        Type: general
    Titles:
      – TitleFull: A unified framework for exploring time-varying volumetric data based on block correspondence
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Kecheng Lu
      – PersonEntity:
          Name:
            NameFull: Chaoli Wang
      – PersonEntity:
          Name:
            NameFull: Keqin Wu
      – PersonEntity:
          Name:
            NameFull: Minglun Gong
      – PersonEntity:
          Name:
            NameFull: Yunhai Wang
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 12
              Type: published
              Y: 2019
          Identifiers:
            – Type: issn-print
              Value: 2468502X
          Numbering:
            – Type: volume
              Value: 3
            – Type: issue
              Value: 4
          Titles:
            – TitleFull: Visual Informatics
              Type: main
ResultId 1