Leveraging multiple data types for improved compound-kinase bioactivity prediction

Bibliographic Details
Title: Leveraging multiple data types for improved compound-kinase bioactivity prediction
Authors: Ryan Theisen, Tianduanyi Wang, Balaguru Ravikumar, Rayees Rahman, Anna Cichońska
Source: Nature Communications, Vol 15, Iss 1, Pp 1-12 (2024)
Publisher Information: Nature Portfolio, 2024.
Publication Year: 2024
Collection: LCC:Science
Subject Terms: Science
More Details: Abstract Machine learning provides efficient ways to map compound-kinase interactions. However, diverse bioactivity data types, including single-dose and multi-dose-response assay results, present challenges. Traditional models utilize only multi-dose data, overlooking information contained in single-dose measurements. Here, we propose a machine learning methodology for compound-kinase activity prediction that leverages both single-dose and dose-response data. We demonstrate that our two-stage approach yields accurate activity predictions and significantly improves model performance compared to training solely on dose-response labels. This superior performance is consistent across five diverse machine learning methods. Using the best performing model, we carried out extensive experimental profiling on a total of 347 selected compound-kinase pairs, achieving a high hit rate of 40% and a negative predictive value of 78%. We show that these rates can be improved further by incorporating model uncertainty estimates into the compound selection process. By integrating multiple activity data types, we demonstrate that our approach holds promise for facilitating the development of training activity datasets in a more efficient and cost-effective way.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2041-1723
Relation: https://doaj.org/toc/2041-1723
DOI: 10.1038/s41467-024-52055-5
Access URL: https://doaj.org/article/4d18f6b76b8e4d209b0b977e65748d7a
Accession Number: edsdoj.4d18f6b76b8e4d209b0b977e65748d7a
Database: Directory of Open Access Journals
FullText Links:
  – Type: other
    Url: https://resolver.ebsco.com:443/public/rma-ftfapi/ejs/direct?AccessToken=4612B6ADD1B14A54EBD0&Show=Object
Text:
  Availability: 0
CustomLinks:
  – Url: https://login.libproxy.scu.edu/login?url=http://www.nature.com/openurl?genre=article&title=Nature%20Communications&volume=15&issue=1&spage=1
    Name: Nature Publishing
    Category: fullText
    Text: Full Text from Nature Publishing
    MouseOverText: Full Text from Nature Publishing
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=20411723&ISBN=&volume=15&issue=1&date=20240801&spage=1&pages=1-12&title=Nature Communications&atitle=Leveraging%20multiple%20data%20types%20for%20improved%20compound-kinase%20bioactivity%20prediction&aulast=Ryan%20Theisen&id=DOI:10.1038/s41467-024-52055-5
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/4d18f6b76b8e4d209b0b977e65748d7a
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.4d18f6b76b8e4d209b0b977e65748d7a
RelevancyScore: 1033
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1033.06872558594
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Leveraging multiple data types for improved compound-kinase bioactivity prediction
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Ryan+Theisen%22">Ryan Theisen</searchLink><br /><searchLink fieldCode="AR" term="%22Tianduanyi+Wang%22">Tianduanyi Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Balaguru+Ravikumar%22">Balaguru Ravikumar</searchLink><br /><searchLink fieldCode="AR" term="%22Rayees+Rahman%22">Rayees Rahman</searchLink><br /><searchLink fieldCode="AR" term="%22Anna+Cichońska%22">Anna Cichońska</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Nature Communications, Vol 15, Iss 1, Pp 1-12 (2024)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Nature Portfolio, 2024.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Science
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Science%22">Science</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Abstract Machine learning provides efficient ways to map compound-kinase interactions. However, diverse bioactivity data types, including single-dose and multi-dose-response assay results, present challenges. Traditional models utilize only multi-dose data, overlooking information contained in single-dose measurements. Here, we propose a machine learning methodology for compound-kinase activity prediction that leverages both single-dose and dose-response data. We demonstrate that our two-stage approach yields accurate activity predictions and significantly improves model performance compared to training solely on dose-response labels. This superior performance is consistent across five diverse machine learning methods. Using the best performing model, we carried out extensive experimental profiling on a total of 347 selected compound-kinase pairs, achieving a high hit rate of 40% and a negative predictive value of 78%. We show that these rates can be improved further by incorporating model uncertainty estimates into the compound selection process. By integrating multiple activity data types, we demonstrate that our approach holds promise for facilitating the development of training activity datasets in a more efficient and cost-effective way.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2041-1723
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://doaj.org/toc/2041-1723
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1038/s41467-024-52055-5
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/4d18f6b76b8e4d209b0b977e65748d7a" linkWindow="_blank">https://doaj.org/article/4d18f6b76b8e4d209b0b977e65748d7a</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.4d18f6b76b8e4d209b0b977e65748d7a
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.4d18f6b76b8e4d209b0b977e65748d7a
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1038/s41467-024-52055-5
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 12
        StartPage: 1
    Subjects:
      – SubjectFull: Science
        Type: general
    Titles:
      – TitleFull: Leveraging multiple data types for improved compound-kinase bioactivity prediction
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Ryan Theisen
      – PersonEntity:
          Name:
            NameFull: Tianduanyi Wang
      – PersonEntity:
          Name:
            NameFull: Balaguru Ravikumar
      – PersonEntity:
          Name:
            NameFull: Rayees Rahman
      – PersonEntity:
          Name:
            NameFull: Anna Cichońska
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 08
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-print
              Value: 20411723
          Numbering:
            – Type: volume
              Value: 15
            – Type: issue
              Value: 1
          Titles:
            – TitleFull: Nature Communications
              Type: main
ResultId 1