Dynamic Mode Decomposition Based Video Shot Detection

Bibliographic Details
Title: Dynamic Mode Decomposition Based Video Shot Detection
Authors: Chongke Bi, Ye Yuan, JiaWan Zhang, Yun Shi, Yiqing Xiang, Yuehuan Wang, RongHui Zhang
Source: IEEE Access, Vol 6, Pp 21397-21407 (2018)
Publisher Information: IEEE, 2018.
Publication Year: 2018
Collection: LCC:Electrical engineering. Electronics. Nuclear engineering
Subject Terms: Dynamic mode decomposition, video shot detection, shot boundary, Electrical engineering. Electronics. Nuclear engineering, TK1-9971
More Details: Shot detection is widely used in video semantic analysis, video scene segmentation, and video retrieval. However, this is still a challenging task, due to the weak boundary and a sudden change in brightness or foreground objects. In this paper, we propose a new framework based on dynamic mode decomposition (DMD) for shot boundary detection. Because the DMD can extract several temporal foreground modes and one temporal background mode from video data, shot boundaries can be detected when the amplitude changes sharply. Here, the amplitude is the DMD coefficient to restore the video. The main idea behind the shot boundaries detection is finding the amplitude change of background mode. We can reduce error detection when the illumination changes sharply or the foreground object (or camera) moves very quickly. At the same time, our algorithm has a high detection accuracy, even the color changes are not obvious, the illumination changes slowly, or the foreground objects overlap. Meanwhile, a color space for DMD is selected for reducing false detection. Finally, the effectiveness of our method will be demonstrated through detecting the shot boundaries of the various content types of videos.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2169-3536
Relation: https://ieeexplore.ieee.org/document/8334241/; https://doaj.org/toc/2169-3536
DOI: 10.1109/ACCESS.2018.2825106
Access URL: https://doaj.org/article/de2f5f45939f425396d7597ce758b515
Accession Number: edsdoj.2f5f45939f425396d7597ce758b515
Database: Directory of Open Access Journals
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://login.libproxy.scu.edu/login?url=http://ieeexplore.ieee.org/search/searchresult.jsp?action=search&newsearch=true&queryText=%22DOI%22:10.1109/ACCESS.2018.2825106
    Name: EDS - IEEE (s8985755)
    Category: fullText
    Text: Check IEEE Xplore for full text
    MouseOverText: Check IEEE Xplore for full text. A new window will open.
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=21693536&ISBN=&volume=6&issue=&date=20180101&spage=21397&pages=21397-21407&title=IEEE Access&atitle=Dynamic%20Mode%20Decomposition%20Based%20Video%20Shot%20Detection&aulast=Chongke%20Bi&id=DOI:10.1109/ACCESS.2018.2825106
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/de2f5f45939f425396d7597ce758b515
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.2f5f45939f425396d7597ce758b515
RelevancyScore: 907
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 906.885437011719
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Dynamic Mode Decomposition Based Video Shot Detection
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Chongke+Bi%22">Chongke Bi</searchLink><br /><searchLink fieldCode="AR" term="%22Ye+Yuan%22">Ye Yuan</searchLink><br /><searchLink fieldCode="AR" term="%22JiaWan+Zhang%22">JiaWan Zhang</searchLink><br /><searchLink fieldCode="AR" term="%22Yun+Shi%22">Yun Shi</searchLink><br /><searchLink fieldCode="AR" term="%22Yiqing+Xiang%22">Yiqing Xiang</searchLink><br /><searchLink fieldCode="AR" term="%22Yuehuan+Wang%22">Yuehuan Wang</searchLink><br /><searchLink fieldCode="AR" term="%22RongHui+Zhang%22">RongHui Zhang</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: IEEE Access, Vol 6, Pp 21397-21407 (2018)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: IEEE, 2018.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2018
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Electrical engineering. Electronics. Nuclear engineering
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Dynamic+mode+decomposition%22">Dynamic mode decomposition</searchLink><br /><searchLink fieldCode="DE" term="%22video+shot+detection%22">video shot detection</searchLink><br /><searchLink fieldCode="DE" term="%22shot+boundary%22">shot boundary</searchLink><br /><searchLink fieldCode="DE" term="%22Electrical+engineering%2E+Electronics%2E+Nuclear+engineering%22">Electrical engineering. Electronics. Nuclear engineering</searchLink><br /><searchLink fieldCode="DE" term="%22TK1-9971%22">TK1-9971</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Shot detection is widely used in video semantic analysis, video scene segmentation, and video retrieval. However, this is still a challenging task, due to the weak boundary and a sudden change in brightness or foreground objects. In this paper, we propose a new framework based on dynamic mode decomposition (DMD) for shot boundary detection. Because the DMD can extract several temporal foreground modes and one temporal background mode from video data, shot boundaries can be detected when the amplitude changes sharply. Here, the amplitude is the DMD coefficient to restore the video. The main idea behind the shot boundaries detection is finding the amplitude change of background mode. We can reduce error detection when the illumination changes sharply or the foreground object (or camera) moves very quickly. At the same time, our algorithm has a high detection accuracy, even the color changes are not obvious, the illumination changes slowly, or the foreground objects overlap. Meanwhile, a color space for DMD is selected for reducing false detection. Finally, the effectiveness of our method will be demonstrated through detecting the shot boundaries of the various content types of videos.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2169-3536
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://ieeexplore.ieee.org/document/8334241/; https://doaj.org/toc/2169-3536
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1109/ACCESS.2018.2825106
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/de2f5f45939f425396d7597ce758b515" linkWindow="_blank">https://doaj.org/article/de2f5f45939f425396d7597ce758b515</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.2f5f45939f425396d7597ce758b515
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.2f5f45939f425396d7597ce758b515
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1109/ACCESS.2018.2825106
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 11
        StartPage: 21397
    Subjects:
      – SubjectFull: Dynamic mode decomposition
        Type: general
      – SubjectFull: video shot detection
        Type: general
      – SubjectFull: shot boundary
        Type: general
      – SubjectFull: Electrical engineering. Electronics. Nuclear engineering
        Type: general
      – SubjectFull: TK1-9971
        Type: general
    Titles:
      – TitleFull: Dynamic Mode Decomposition Based Video Shot Detection
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Chongke Bi
      – PersonEntity:
          Name:
            NameFull: Ye Yuan
      – PersonEntity:
          Name:
            NameFull: JiaWan Zhang
      – PersonEntity:
          Name:
            NameFull: Yun Shi
      – PersonEntity:
          Name:
            NameFull: Yiqing Xiang
      – PersonEntity:
          Name:
            NameFull: Yuehuan Wang
      – PersonEntity:
          Name:
            NameFull: RongHui Zhang
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2018
          Identifiers:
            – Type: issn-print
              Value: 21693536
          Numbering:
            – Type: volume
              Value: 6
          Titles:
            – TitleFull: IEEE Access
              Type: main
ResultId 1