Artificial intelligence predicts direct-acting antivirals failure among hepatitis C virus patients: A nationwide hepatitis C virus registry program

Bibliographic Details
Title: Artificial intelligence predicts direct-acting antivirals failure among hepatitis C virus patients: A nationwide hepatitis C virus registry program
Authors: Ming-Ying Lu, Chung-Feng Huang, Chao-Hung Hung, Chi‐Ming Tai, Lein-Ray Mo, Hsing-Tao Kuo, Kuo-Chih Tseng, Ching-Chu Lo, Ming-Jong Bair, Szu-Jen Wang, Jee-Fu Huang, Ming-Lun Yeh, Chun-Ting Chen, Ming-Chang Tsai, Chien-Wei Huang, Pei-Lun Lee, Tzeng-Hue Yang, Yi-Hsiang Huang, Lee-Won Chong, Chien-Lin Chen, Chi-Chieh Yang, Sheng‐Shun Yang, Pin-Nan Cheng, Tsai-Yuan Hsieh, Jui-Ting Hu, Wen-Chih Wu, Chien-Yu Cheng, Guei-Ying Chen, Guo-Xiong Zhou, Wei-Lun Tsai, Chien-Neng Kao, Chih-Lang Lin, Chia-Chi Wang, Ta-Ya Lin, Chih‐Lin Lin, Wei-Wen Su, Tzong-Hsi Lee, Te-Sheng Chang, Chun-Jen Liu, Chia-Yen Dai, Jia-Horng Kao, Han-Chieh Lin, Wan-Long Chuang, Cheng-Yuan Peng, Chun-Wei- Tsai, Chi-Yi Chen, Ming-Lung Yu
Source: Clinical and Molecular Hepatology, Vol 30, Iss 1, Pp 64-79 (2024)
Publisher Information: Korean Association for the Study of the Liver, 2024.
Publication Year: 2024
Collection: LCC:Diseases of the digestive system. Gastroenterology
Subject Terms: hepatitis c virus, antiviral agents, artificial intelligence, machine learning, algorithms, Diseases of the digestive system. Gastroenterology, RC799-869
More Details: Background/Aims Despite the high efficacy of direct-acting antivirals (DAAs), approximately 1–3% of hepatitis C virus (HCV) patients fail to achieve a sustained virological response. We conducted a nationwide study to investigate risk factors associated with DAA treatment failure. Machine-learning algorithms have been applied to discriminate subjects who may fail to respond to DAA therapy. Methods We analyzed the Taiwan HCV Registry Program database to explore predictors of DAA failure in HCV patients. Fifty-five host and virological features were assessed using multivariate logistic regression, decision tree, random forest, eXtreme Gradient Boosting (XGBoost), and artificial neural network. The primary outcome was undetectable HCV RNA at 12 weeks after the end of treatment. Results The training (n=23,955) and validation (n=10,346) datasets had similar baseline demographics, with an overall DAA failure rate of 1.6% (n=538). Multivariate logistic regression analysis revealed that liver cirrhosis, hepatocellular carcinoma, poor DAA adherence, and higher hemoglobin A1c were significantly associated with virological failure. XGBoost outperformed the other algorithms and logistic regression models, with an area under the receiver operating characteristic curve of 1.000 in the training dataset and 0.803 in the validation dataset. The top five predictors of treatment failure were HCV RNA, body mass index, α-fetoprotein, platelets, and FIB-4 index. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the XGBoost model (cutoff value=0.5) were 99.5%, 69.7%, 99.9%, 97.4%, and 99.5%, respectively, for the entire dataset. Conclusions Machine learning algorithms effectively provide risk stratification for DAA failure and additional information on the factors associated with DAA failure.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2287-2728
2287-285X
Relation: http://e-cmh.org/upload/pdf/cmh-2023-0287.pdf; https://doaj.org/toc/2287-2728; https://doaj.org/toc/2287-285X
DOI: 10.3350/cmh.2023.0287
Access URL: https://doaj.org/article/29b467adfe714190932d96e188f51734
Accession Number: edsdoj.29b467adfe714190932d96e188f51734
Database: Directory of Open Access Journals
FullText Text:
  Availability: 0
CustomLinks:
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=22872728&ISBN=&volume=30&issue=1&date=20240101&spage=64&pages=64-79&title=Clinical and Molecular Hepatology&atitle=Artificial%20intelligence%20predicts%20direct-acting%20antivirals%20failure%20among%20hepatitis%20C%20virus%20patients%3A%20A%20nationwide%20hepatitis%20C%20virus%20registry%20program&aulast=Ming-Ying%20Lu&id=DOI:10.3350/cmh.2023.0287
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/29b467adfe714190932d96e188f51734
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.29b467adfe714190932d96e188f51734
RelevancyScore: 1009
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1009.35363769531
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Artificial intelligence predicts direct-acting antivirals failure among hepatitis C virus patients: A nationwide hepatitis C virus registry program
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Ming-Ying+Lu%22">Ming-Ying Lu</searchLink><br /><searchLink fieldCode="AR" term="%22Chung-Feng+Huang%22">Chung-Feng Huang</searchLink><br /><searchLink fieldCode="AR" term="%22Chao-Hung+Hung%22">Chao-Hung Hung</searchLink><br /><searchLink fieldCode="AR" term="%22Chi‐Ming+Tai%22">Chi‐Ming Tai</searchLink><br /><searchLink fieldCode="AR" term="%22Lein-Ray+Mo%22">Lein-Ray Mo</searchLink><br /><searchLink fieldCode="AR" term="%22Hsing-Tao+Kuo%22">Hsing-Tao Kuo</searchLink><br /><searchLink fieldCode="AR" term="%22Kuo-Chih+Tseng%22">Kuo-Chih Tseng</searchLink><br /><searchLink fieldCode="AR" term="%22Ching-Chu+Lo%22">Ching-Chu Lo</searchLink><br /><searchLink fieldCode="AR" term="%22Ming-Jong+Bair%22">Ming-Jong Bair</searchLink><br /><searchLink fieldCode="AR" term="%22Szu-Jen+Wang%22">Szu-Jen Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Jee-Fu+Huang%22">Jee-Fu Huang</searchLink><br /><searchLink fieldCode="AR" term="%22Ming-Lun+Yeh%22">Ming-Lun Yeh</searchLink><br /><searchLink fieldCode="AR" term="%22Chun-Ting+Chen%22">Chun-Ting Chen</searchLink><br /><searchLink fieldCode="AR" term="%22Ming-Chang+Tsai%22">Ming-Chang Tsai</searchLink><br /><searchLink fieldCode="AR" term="%22Chien-Wei+Huang%22">Chien-Wei Huang</searchLink><br /><searchLink fieldCode="AR" term="%22Pei-Lun+Lee%22">Pei-Lun Lee</searchLink><br /><searchLink fieldCode="AR" term="%22Tzeng-Hue+Yang%22">Tzeng-Hue Yang</searchLink><br /><searchLink fieldCode="AR" term="%22Yi-Hsiang+Huang%22">Yi-Hsiang Huang</searchLink><br /><searchLink fieldCode="AR" term="%22Lee-Won+Chong%22">Lee-Won Chong</searchLink><br /><searchLink fieldCode="AR" term="%22Chien-Lin+Chen%22">Chien-Lin Chen</searchLink><br /><searchLink fieldCode="AR" term="%22Chi-Chieh+Yang%22">Chi-Chieh Yang</searchLink><br /><searchLink fieldCode="AR" term="%22Sheng‐Shun+Yang%22">Sheng‐Shun Yang</searchLink><br /><searchLink fieldCode="AR" term="%22Pin-Nan+Cheng%22">Pin-Nan Cheng</searchLink><br /><searchLink fieldCode="AR" term="%22Tsai-Yuan+Hsieh%22">Tsai-Yuan Hsieh</searchLink><br /><searchLink fieldCode="AR" term="%22Jui-Ting+Hu%22">Jui-Ting Hu</searchLink><br /><searchLink fieldCode="AR" term="%22Wen-Chih+Wu%22">Wen-Chih Wu</searchLink><br /><searchLink fieldCode="AR" term="%22Chien-Yu+Cheng%22">Chien-Yu Cheng</searchLink><br /><searchLink fieldCode="AR" term="%22Guei-Ying+Chen%22">Guei-Ying Chen</searchLink><br /><searchLink fieldCode="AR" term="%22Guo-Xiong+Zhou%22">Guo-Xiong Zhou</searchLink><br /><searchLink fieldCode="AR" term="%22Wei-Lun+Tsai%22">Wei-Lun Tsai</searchLink><br /><searchLink fieldCode="AR" term="%22Chien-Neng+Kao%22">Chien-Neng Kao</searchLink><br /><searchLink fieldCode="AR" term="%22Chih-Lang+Lin%22">Chih-Lang Lin</searchLink><br /><searchLink fieldCode="AR" term="%22Chia-Chi+Wang%22">Chia-Chi Wang</searchLink><br /><searchLink fieldCode="AR" term="%22Ta-Ya+Lin%22">Ta-Ya Lin</searchLink><br /><searchLink fieldCode="AR" term="%22Chih‐Lin+Lin%22">Chih‐Lin Lin</searchLink><br /><searchLink fieldCode="AR" term="%22Wei-Wen+Su%22">Wei-Wen Su</searchLink><br /><searchLink fieldCode="AR" term="%22Tzong-Hsi+Lee%22">Tzong-Hsi Lee</searchLink><br /><searchLink fieldCode="AR" term="%22Te-Sheng+Chang%22">Te-Sheng Chang</searchLink><br /><searchLink fieldCode="AR" term="%22Chun-Jen+Liu%22">Chun-Jen Liu</searchLink><br /><searchLink fieldCode="AR" term="%22Chia-Yen+Dai%22">Chia-Yen Dai</searchLink><br /><searchLink fieldCode="AR" term="%22Jia-Horng+Kao%22">Jia-Horng Kao</searchLink><br /><searchLink fieldCode="AR" term="%22Han-Chieh+Lin%22">Han-Chieh Lin</searchLink><br /><searchLink fieldCode="AR" term="%22Wan-Long+Chuang%22">Wan-Long Chuang</searchLink><br /><searchLink fieldCode="AR" term="%22Cheng-Yuan+Peng%22">Cheng-Yuan Peng</searchLink><br /><searchLink fieldCode="AR" term="%22Chun-Wei-+Tsai%22">Chun-Wei- Tsai</searchLink><br /><searchLink fieldCode="AR" term="%22Chi-Yi+Chen%22">Chi-Yi Chen</searchLink><br /><searchLink fieldCode="AR" term="%22Ming-Lung+Yu%22">Ming-Lung Yu</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Clinical and Molecular Hepatology, Vol 30, Iss 1, Pp 64-79 (2024)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Korean Association for the Study of the Liver, 2024.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Diseases of the digestive system. Gastroenterology
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22hepatitis+c+virus%22">hepatitis c virus</searchLink><br /><searchLink fieldCode="DE" term="%22antiviral+agents%22">antiviral agents</searchLink><br /><searchLink fieldCode="DE" term="%22artificial+intelligence%22">artificial intelligence</searchLink><br /><searchLink fieldCode="DE" term="%22machine+learning%22">machine learning</searchLink><br /><searchLink fieldCode="DE" term="%22algorithms%22">algorithms</searchLink><br /><searchLink fieldCode="DE" term="%22Diseases+of+the+digestive+system%2E+Gastroenterology%22">Diseases of the digestive system. Gastroenterology</searchLink><br /><searchLink fieldCode="DE" term="%22RC799-869%22">RC799-869</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Background/Aims Despite the high efficacy of direct-acting antivirals (DAAs), approximately 1–3% of hepatitis C virus (HCV) patients fail to achieve a sustained virological response. We conducted a nationwide study to investigate risk factors associated with DAA treatment failure. Machine-learning algorithms have been applied to discriminate subjects who may fail to respond to DAA therapy. Methods We analyzed the Taiwan HCV Registry Program database to explore predictors of DAA failure in HCV patients. Fifty-five host and virological features were assessed using multivariate logistic regression, decision tree, random forest, eXtreme Gradient Boosting (XGBoost), and artificial neural network. The primary outcome was undetectable HCV RNA at 12 weeks after the end of treatment. Results The training (n=23,955) and validation (n=10,346) datasets had similar baseline demographics, with an overall DAA failure rate of 1.6% (n=538). Multivariate logistic regression analysis revealed that liver cirrhosis, hepatocellular carcinoma, poor DAA adherence, and higher hemoglobin A1c were significantly associated with virological failure. XGBoost outperformed the other algorithms and logistic regression models, with an area under the receiver operating characteristic curve of 1.000 in the training dataset and 0.803 in the validation dataset. The top five predictors of treatment failure were HCV RNA, body mass index, α-fetoprotein, platelets, and FIB-4 index. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the XGBoost model (cutoff value=0.5) were 99.5%, 69.7%, 99.9%, 97.4%, and 99.5%, respectively, for the entire dataset. Conclusions Machine learning algorithms effectively provide risk stratification for DAA failure and additional information on the factors associated with DAA failure.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2287-2728<br />2287-285X
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: http://e-cmh.org/upload/pdf/cmh-2023-0287.pdf; https://doaj.org/toc/2287-2728; https://doaj.org/toc/2287-285X
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.3350/cmh.2023.0287
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/29b467adfe714190932d96e188f51734" linkWindow="_blank">https://doaj.org/article/29b467adfe714190932d96e188f51734</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.29b467adfe714190932d96e188f51734
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.29b467adfe714190932d96e188f51734
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.3350/cmh.2023.0287
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 16
        StartPage: 64
    Subjects:
      – SubjectFull: hepatitis c virus
        Type: general
      – SubjectFull: antiviral agents
        Type: general
      – SubjectFull: artificial intelligence
        Type: general
      – SubjectFull: machine learning
        Type: general
      – SubjectFull: algorithms
        Type: general
      – SubjectFull: Diseases of the digestive system. Gastroenterology
        Type: general
      – SubjectFull: RC799-869
        Type: general
    Titles:
      – TitleFull: Artificial intelligence predicts direct-acting antivirals failure among hepatitis C virus patients: A nationwide hepatitis C virus registry program
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Ming-Ying Lu
      – PersonEntity:
          Name:
            NameFull: Chung-Feng Huang
      – PersonEntity:
          Name:
            NameFull: Chao-Hung Hung
      – PersonEntity:
          Name:
            NameFull: Chi‐Ming Tai
      – PersonEntity:
          Name:
            NameFull: Lein-Ray Mo
      – PersonEntity:
          Name:
            NameFull: Hsing-Tao Kuo
      – PersonEntity:
          Name:
            NameFull: Kuo-Chih Tseng
      – PersonEntity:
          Name:
            NameFull: Ching-Chu Lo
      – PersonEntity:
          Name:
            NameFull: Ming-Jong Bair
      – PersonEntity:
          Name:
            NameFull: Szu-Jen Wang
      – PersonEntity:
          Name:
            NameFull: Jee-Fu Huang
      – PersonEntity:
          Name:
            NameFull: Ming-Lun Yeh
      – PersonEntity:
          Name:
            NameFull: Chun-Ting Chen
      – PersonEntity:
          Name:
            NameFull: Ming-Chang Tsai
      – PersonEntity:
          Name:
            NameFull: Chien-Wei Huang
      – PersonEntity:
          Name:
            NameFull: Pei-Lun Lee
      – PersonEntity:
          Name:
            NameFull: Tzeng-Hue Yang
      – PersonEntity:
          Name:
            NameFull: Yi-Hsiang Huang
      – PersonEntity:
          Name:
            NameFull: Lee-Won Chong
      – PersonEntity:
          Name:
            NameFull: Chien-Lin Chen
      – PersonEntity:
          Name:
            NameFull: Chi-Chieh Yang
      – PersonEntity:
          Name:
            NameFull: Sheng‐Shun Yang
      – PersonEntity:
          Name:
            NameFull: Pin-Nan Cheng
      – PersonEntity:
          Name:
            NameFull: Tsai-Yuan Hsieh
      – PersonEntity:
          Name:
            NameFull: Jui-Ting Hu
      – PersonEntity:
          Name:
            NameFull: Wen-Chih Wu
      – PersonEntity:
          Name:
            NameFull: Chien-Yu Cheng
      – PersonEntity:
          Name:
            NameFull: Guei-Ying Chen
      – PersonEntity:
          Name:
            NameFull: Guo-Xiong Zhou
      – PersonEntity:
          Name:
            NameFull: Wei-Lun Tsai
      – PersonEntity:
          Name:
            NameFull: Chien-Neng Kao
      – PersonEntity:
          Name:
            NameFull: Chih-Lang Lin
      – PersonEntity:
          Name:
            NameFull: Chia-Chi Wang
      – PersonEntity:
          Name:
            NameFull: Ta-Ya Lin
      – PersonEntity:
          Name:
            NameFull: Chih‐Lin Lin
      – PersonEntity:
          Name:
            NameFull: Wei-Wen Su
      – PersonEntity:
          Name:
            NameFull: Tzong-Hsi Lee
      – PersonEntity:
          Name:
            NameFull: Te-Sheng Chang
      – PersonEntity:
          Name:
            NameFull: Chun-Jen Liu
      – PersonEntity:
          Name:
            NameFull: Chia-Yen Dai
      – PersonEntity:
          Name:
            NameFull: Jia-Horng Kao
      – PersonEntity:
          Name:
            NameFull: Han-Chieh Lin
      – PersonEntity:
          Name:
            NameFull: Wan-Long Chuang
      – PersonEntity:
          Name:
            NameFull: Cheng-Yuan Peng
      – PersonEntity:
          Name:
            NameFull: Chun-Wei- Tsai
      – PersonEntity:
          Name:
            NameFull: Chi-Yi Chen
      – PersonEntity:
          Name:
            NameFull: Ming-Lung Yu
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 01
              Type: published
              Y: 2024
          Identifiers:
            – Type: issn-print
              Value: 22872728
            – Type: issn-print
              Value: 2287285X
          Numbering:
            – Type: volume
              Value: 30
            – Type: issue
              Value: 1
          Titles:
            – TitleFull: Clinical and Molecular Hepatology
              Type: main
ResultId 1