B-Line Detection and Localization in Lung Ultrasound Videos Using Spatiotemporal Attention
Title: | B-Line Detection and Localization in Lung Ultrasound Videos Using Spatiotemporal Attention |
---|---|
Authors: | Hamideh Kerdegari, Nhat Tran Huy Phung, Angela McBride, Luigi Pisani, Hao Van Nguyen, Thuy Bich Duong, Reza Razavi, Louise Thwaites, Sophie Yacoub, Alberto Gomez, VITAL Consortium |
Source: | Applied Sciences, Vol 11, Iss 24, p 11697 (2021) |
Publisher Information: | MDPI AG, 2021. |
Publication Year: | 2021 |
Collection: | LCC:Technology LCC:Engineering (General). Civil engineering (General) LCC:Biology (General) LCC:Physics LCC:Chemistry |
Subject Terms: | lung ultrasound (LUS) imaging, b-lines, spatiotemporal attention, classification, video analysis, Technology, Engineering (General). Civil engineering (General), TA1-2040, Biology (General), QH301-705.5, Physics, QC1-999, Chemistry, QD1-999 |
More Details: | The presence of B-line artefacts, the main artefact reflecting lung abnormalities in dengue patients, is often assessed using lung ultrasound (LUS) imaging. Inspired by human visual attention that enables us to process videos efficiently by paying attention to where and when it is required, we propose a spatiotemporal attention mechanism for B-line detection in LUS videos. The spatial attention allows the model to focus on the most task relevant parts of the image by learning a saliency map. The temporal attention generates an attention score for each attended frame to identify the most relevant frames from an input video. Our model not only identifies videos where B-lines show, but also localizes, within those videos, B-line related features both spatially and temporally, despite being trained in a weakly-supervised manner. We evaluate our approach on a LUS video dataset collected from severe dengue patients in a resource-limited hospital, assessing the B-line detection rate and the model’s ability to localize discriminative B-line regions spatially and B-line frames temporally. Experimental results demonstrate the efficacy of our approach for classifying B-line videos with an F1 score of up to 83.2% and localizing the most salient B-line regions both spatially and temporally with a correlation coefficient of 0.67 and an IoU of 69.7%, respectively. |
Document Type: | article |
File Description: | electronic resource |
Language: | English |
ISSN: | 2076-3417 |
Relation: | https://www.mdpi.com/2076-3417/11/24/11697; https://doaj.org/toc/2076-3417 |
DOI: | 10.3390/app112411697 |
Access URL: | https://doaj.org/article/290c171af82149e2bb8d7f3330397243 |
Accession Number: | edsdoj.290c171af82149e2bb8d7f3330397243 |
Database: | Directory of Open Access Journals |
FullText | Links: – Type: pdflink Url: https://content.ebscohost.com/cds/retrieve?content=AQICAHjPtM4BHU3ZchRwgzYmadcigk49r9CVlbU7V5F6lgH7WwEpcUyUFLtvqm-Q60ZKkpgmAAAA4jCB3wYJKoZIhvcNAQcGoIHRMIHOAgEAMIHIBgkqhkiG9w0BBwEwHgYJYIZIAWUDBAEuMBEEDMdEHegbU4vx-wwsGwIBEICBmisgZdRQFtaNgWoKE1ioEQ-9pkvi5bRM5Y0PgoRCReKOwXXrB98cocPO1EjMZHiEuTpw24V4yKGBp-f_pvfSeHGs8UXxw-fnoCDDxOPzz-TlXJsvd7egNnJEGYg86k_K-FquE8r2IGvMHo6OX3dJbTqZKXdV5Eao2st1lDDylFcVhf8A0-EO99br7S-BDK5u4ES59aBQ-H6_3NQ= Text: Availability: 0 CustomLinks: – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=20763417&ISBN=&volume=11&issue=24&date=20211201&spage=11697&pages=11697-11697&title=Applied Sciences&atitle=B-Line%20Detection%20and%20Localization%20in%20Lung%20Ultrasound%20Videos%20Using%20Spatiotemporal%20Attention&aulast=Hamideh%20Kerdegari&id=DOI:10.3390/app112411697 Name: Full Text Finder (for New FTF UI) (s8985755) Category: fullText Text: Find It @ SCU Libraries MouseOverText: Find It @ SCU Libraries – Url: https://doaj.org/article/290c171af82149e2bb8d7f3330397243 Name: EDS - DOAJ (s8985755) Category: fullText Text: View record from DOAJ MouseOverText: View record from DOAJ |
---|---|
Header | DbId: edsdoj DbLabel: Directory of Open Access Journals An: edsdoj.290c171af82149e2bb8d7f3330397243 RelevancyScore: 907 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 906.691040039063 |
IllustrationInfo | |
Items | – Name: Title Label: Title Group: Ti Data: B-Line Detection and Localization in Lung Ultrasound Videos Using Spatiotemporal Attention – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Hamideh+Kerdegari%22">Hamideh Kerdegari</searchLink><br /><searchLink fieldCode="AR" term="%22Nhat+Tran+Huy+Phung%22">Nhat Tran Huy Phung</searchLink><br /><searchLink fieldCode="AR" term="%22Angela+McBride%22">Angela McBride</searchLink><br /><searchLink fieldCode="AR" term="%22Luigi+Pisani%22">Luigi Pisani</searchLink><br /><searchLink fieldCode="AR" term="%22Hao+Van+Nguyen%22">Hao Van Nguyen</searchLink><br /><searchLink fieldCode="AR" term="%22Thuy+Bich+Duong%22">Thuy Bich Duong</searchLink><br /><searchLink fieldCode="AR" term="%22Reza+Razavi%22">Reza Razavi</searchLink><br /><searchLink fieldCode="AR" term="%22Louise+Thwaites%22">Louise Thwaites</searchLink><br /><searchLink fieldCode="AR" term="%22Sophie+Yacoub%22">Sophie Yacoub</searchLink><br /><searchLink fieldCode="AR" term="%22Alberto+Gomez%22">Alberto Gomez</searchLink><br /><searchLink fieldCode="AR" term="%22VITAL+Consortium%22">VITAL Consortium</searchLink> – Name: TitleSource Label: Source Group: Src Data: Applied Sciences, Vol 11, Iss 24, p 11697 (2021) – Name: Publisher Label: Publisher Information Group: PubInfo Data: MDPI AG, 2021. – Name: DatePubCY Label: Publication Year Group: Date Data: 2021 – Name: Subset Label: Collection Group: HoldingsInfo Data: LCC:Technology<br />LCC:Engineering (General). Civil engineering (General)<br />LCC:Biology (General)<br />LCC:Physics<br />LCC:Chemistry – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22lung+ultrasound+%28LUS%29+imaging%22">lung ultrasound (LUS) imaging</searchLink><br /><searchLink fieldCode="DE" term="%22b-lines%22">b-lines</searchLink><br /><searchLink fieldCode="DE" term="%22spatiotemporal+attention%22">spatiotemporal attention</searchLink><br /><searchLink fieldCode="DE" term="%22classification%22">classification</searchLink><br /><searchLink fieldCode="DE" term="%22video+analysis%22">video analysis</searchLink><br /><searchLink fieldCode="DE" term="%22Technology%22">Technology</searchLink><br /><searchLink fieldCode="DE" term="%22Engineering+%28General%29%2E+Civil+engineering+%28General%29%22">Engineering (General). Civil engineering (General)</searchLink><br /><searchLink fieldCode="DE" term="%22TA1-2040%22">TA1-2040</searchLink><br /><searchLink fieldCode="DE" term="%22Biology+%28General%29%22">Biology (General)</searchLink><br /><searchLink fieldCode="DE" term="%22QH301-705%2E5%22">QH301-705.5</searchLink><br /><searchLink fieldCode="DE" term="%22Physics%22">Physics</searchLink><br /><searchLink fieldCode="DE" term="%22QC1-999%22">QC1-999</searchLink><br /><searchLink fieldCode="DE" term="%22Chemistry%22">Chemistry</searchLink><br /><searchLink fieldCode="DE" term="%22QD1-999%22">QD1-999</searchLink> – Name: Abstract Label: Description Group: Ab Data: The presence of B-line artefacts, the main artefact reflecting lung abnormalities in dengue patients, is often assessed using lung ultrasound (LUS) imaging. Inspired by human visual attention that enables us to process videos efficiently by paying attention to where and when it is required, we propose a spatiotemporal attention mechanism for B-line detection in LUS videos. The spatial attention allows the model to focus on the most task relevant parts of the image by learning a saliency map. The temporal attention generates an attention score for each attended frame to identify the most relevant frames from an input video. Our model not only identifies videos where B-lines show, but also localizes, within those videos, B-line related features both spatially and temporally, despite being trained in a weakly-supervised manner. We evaluate our approach on a LUS video dataset collected from severe dengue patients in a resource-limited hospital, assessing the B-line detection rate and the model’s ability to localize discriminative B-line regions spatially and B-line frames temporally. Experimental results demonstrate the efficacy of our approach for classifying B-line videos with an F1 score of up to 83.2% and localizing the most salient B-line regions both spatially and temporally with a correlation coefficient of 0.67 and an IoU of 69.7%, respectively. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article – Name: Format Label: File Description Group: SrcInfo Data: electronic resource – Name: Language Label: Language Group: Lang Data: English – Name: ISSN Label: ISSN Group: ISSN Data: 2076-3417 – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://www.mdpi.com/2076-3417/11/24/11697; https://doaj.org/toc/2076-3417 – Name: DOI Label: DOI Group: ID Data: 10.3390/app112411697 – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/290c171af82149e2bb8d7f3330397243" linkWindow="_blank">https://doaj.org/article/290c171af82149e2bb8d7f3330397243</link> – Name: AN Label: Accession Number Group: ID Data: edsdoj.290c171af82149e2bb8d7f3330397243 |
PLink | https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.290c171af82149e2bb8d7f3330397243 |
RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.3390/app112411697 Languages: – Text: English PhysicalDescription: Pagination: PageCount: 1 StartPage: 11697 Subjects: – SubjectFull: lung ultrasound (LUS) imaging Type: general – SubjectFull: b-lines Type: general – SubjectFull: spatiotemporal attention Type: general – SubjectFull: classification Type: general – SubjectFull: video analysis Type: general – SubjectFull: Technology Type: general – SubjectFull: Engineering (General). Civil engineering (General) Type: general – SubjectFull: TA1-2040 Type: general – SubjectFull: Biology (General) Type: general – SubjectFull: QH301-705.5 Type: general – SubjectFull: Physics Type: general – SubjectFull: QC1-999 Type: general – SubjectFull: Chemistry Type: general – SubjectFull: QD1-999 Type: general Titles: – TitleFull: B-Line Detection and Localization in Lung Ultrasound Videos Using Spatiotemporal Attention Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Hamideh Kerdegari – PersonEntity: Name: NameFull: Nhat Tran Huy Phung – PersonEntity: Name: NameFull: Angela McBride – PersonEntity: Name: NameFull: Luigi Pisani – PersonEntity: Name: NameFull: Hao Van Nguyen – PersonEntity: Name: NameFull: Thuy Bich Duong – PersonEntity: Name: NameFull: Reza Razavi – PersonEntity: Name: NameFull: Louise Thwaites – PersonEntity: Name: NameFull: Sophie Yacoub – PersonEntity: Name: NameFull: Alberto Gomez – PersonEntity: Name: NameFull: VITAL Consortium IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 12 Type: published Y: 2021 Identifiers: – Type: issn-print Value: 20763417 Numbering: – Type: volume Value: 11 – Type: issue Value: 24 Titles: – TitleFull: Applied Sciences Type: main |
ResultId | 1 |