Palladium Iodide Catalyzed Multicomponent Carbonylative Synthesis of 2-(4-Acylfuran-2-yl)acetamides

Bibliographic Details
Title: Palladium Iodide Catalyzed Multicomponent Carbonylative Synthesis of 2-(4-Acylfuran-2-yl)acetamides
Authors: Ida Ziccarelli, Lucia Veltri, Tommaso Prestia, Roberta Amuso, Maria A. Chiacchio, Raffaella Mancuso, Bartolo Gabriele
Source: Molecules, Vol 28, Iss 19, p 6764 (2023)
Publisher Information: MDPI AG, 2023.
Publication Year: 2023
Collection: LCC:Organic chemistry
Subject Terms: alkynes, amides, aminocarbonylation, carbonylation, C–H activation, conjugate addition, Organic chemistry, QD241-441
More Details: 2-Propargyl-1,3-dicarbonyl compounds have been carbonylated under oxidative conditions and with the catalysis of the PdI2/KI catalytic system to selectively afford previously unreported 2-(4-acylfuran-2-yl)acetamides in fair to good yields (54–81%) over 19 examples. The process takes place under relatively mild conditions and occurs via a mechanistic pathway involving Csp-H activation by oxidative monoamincarbonylation of the terminal triple bond of the substrates with formation of 2-ynamide intermediates, followed by 5-exo-dig O-cyclization (via intramolecular conjugate addition of the in situ formed enolate to the 2-ynamide moiety) and aromative isomerization.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 1420-3049
40732649
Relation: https://www.mdpi.com/1420-3049/28/19/6764; https://doaj.org/toc/1420-3049
DOI: 10.3390/molecules28196764
Access URL: https://doaj.org/article/28d55e40732649f6b77a1671eb3fdfb6
Accession Number: edsdoj.28d55e40732649f6b77a1671eb3fdfb6
Database: Directory of Open Access Journals
Full text is not displayed to guests.
FullText Links:
  – Type: pdflink
    Url: https://content.ebscohost.com/cds/retrieve?content=AQICAHjPtM4BHU3ZchRwgzYmadcigk49r9CVlbU7V5F6lgH7WwF4K1Njl5eJGX6mEm-Z8Xd-AAAA4jCB3wYJKoZIhvcNAQcGoIHRMIHOAgEAMIHIBgkqhkiG9w0BBwEwHgYJYIZIAWUDBAEuMBEEDCMyh35NxZ-EQz3xxQIBEICBmknhMYz5Pv6dIKxSHE7ffd3NE1z5vrGpefSgXY0fVcDKiWnncTt-ng8Wc6VYoGpNkocQzGVxA_tX1r2_2XGPjRPhtbvLvkdMZ11SOovu8RdhvJDioIBPuW-_p35JmjW1P6XSoY2RZIihdQ93a1vAAxxAbrt9HNU9h4M-W5z1bbj8wGYkibESdf57HuqZXndrZQL4zJEp8Mq0FH0=
Text:
  Availability: 1
  Value: <anid>AN0172986847;nnv01oct.23;2023Oct17.06:01;v2.2.500</anid> <title id="AN0172986847-1">Palladium Iodide Catalyzed Multicomponent Carbonylative Synthesis of 2-(4-Acylfuran-2-yl)acetamides </title> <p>2-Propargyl-1,3-dicarbonyl compounds have been carbonylated under oxidative conditions and with the catalysis of the PdI<sub>2</sub>/KI catalytic system to selectively afford previously unreported 2-(4-acylfuran-2-yl)acetamides in fair to good yields (54–81%) over 19 examples. The process takes place under relatively mild conditions and occurs via a mechanistic pathway involving Csp-H activation by oxidative monoamincarbonylation of the terminal triple bond of the substrates with formation of 2-ynamide intermediates, followed by 5-exo-dig O-cyclization (via intramolecular conjugate addition of the in situ formed enolate to the 2-ynamide moiety) and aromative isomerization.</p> <p>Keywords: alkynes; amides; aminocarbonylation; carbonylation; C–H activation; conjugate addition; cyclization; furans; oxidative carbonylation; palladium</p> <hd id="AN0172986847-2">1. Introduction</hd> <p>Functionalized furans are a very important class of heterocyclic derivatives [[<reflink idref="bib1" id="ref1">1</reflink>]], known to possess important biological activities (see, for example, references [[<reflink idref="bib2" id="ref2">2</reflink>]]) and being useful precursors for further transformations (for a review, see reference [[<reflink idref="bib4" id="ref3">4</reflink>]]).</p> <p>Among the synthetic methods available to prepare multisubstituted furans (for recent reviews, see references [[<reflink idref="bib5" id="ref4">5</reflink>], [<reflink idref="bib7" id="ref5">7</reflink>]]), transition metal-catalyzed cyclization (TMCC) of suitable acyclic precursors is particularly attractive (for recent reviews, see references [[<reflink idref="bib8" id="ref6">8</reflink>]]; for a book, see reference [[<reflink idref="bib10" id="ref7">10</reflink>]]; for a recent example, see reference [[<reflink idref="bib11" id="ref8">11</reflink>]]). By this approach, the final compound with the desired substitution pattern can be obtained in one synthetic step starting from readily available substrates.</p> <p>On the other hand, carbon monoxide is a very important C-1 building block in organic synthesis (for a recent book on carbonylation chemistry in organic synthesis, see reference [[<reflink idref="bib12" id="ref9">12</reflink>]]). In fact, CO can be installed in a large variety of organic substrates under different conditions, including transition-metal catalysis, to give high value–added carbonyl compounds (carbonylation reactions), including carbonylated heterocycles (for selected book chapters and reviews on metal-catalyzed carbonylation reactions, also leading to carbonylated heterocycles, see references [[<reflink idref="bib12" id="ref10">12</reflink>], [<reflink idref="bib14" id="ref11">14</reflink>], [<reflink idref="bib16" id="ref12">16</reflink>], [<reflink idref="bib18" id="ref13">18</reflink>], [<reflink idref="bib20" id="ref14">20</reflink>], [<reflink idref="bib22" id="ref15">22</reflink>]]). Accordingly, the combination between TMCC and catalytic carbonylation with the appropriate acyclic precursor may represent an excellent entry to the direct synthesis of carbonyl-functionalized furan derivatives [[<reflink idref="bib12" id="ref16">12</reflink>]].</p> <p>In particular, the catalytic system based on PdI<subs>2</subs> in conjunction with an excess of KI, developed by our research group [[<reflink idref="bib24" id="ref17">24</reflink>]] (for a recent review, see reference [[<reflink idref="bib26" id="ref18">26</reflink>]], has proved very valuable for the realization of several important carbonylative cyclization processes, particularly under oxidative conditions, with the one-step formation of carbonylated heterocyclic derivatives. Among the different routes that the PdI<subs>2</subs>/KI catalytic system is able to promote, the C<emph>sp</emph>-H activation by oxidative monoalkoxycarbonylation of the terminal triple bond, disclosed by our group in 2001 for the catalytic synthesis of 2-ynamides from simple alkyl- or arylacetylenes (Scheme 1a) [[<reflink idref="bib27" id="ref19">27</reflink>]], is particularly significant. In fact, this reactivity has been successfully employed for the synthesis of a plethora of heterocyclic derivatives, when applied to terminal alkyne substrates bearing a nucleophilic group in suitable position for the occurrence of an intramolecular conjugate addition to the initially formed 2-ynamide intermediate (Scheme 1b) (for a review, see reference [[<reflink idref="bib26" id="ref20">26</reflink>]]; for a very recent example, see reference [[<reflink idref="bib29" id="ref21">29</reflink>]]).</p> <p>In this work, we report a new application of this concept, which allows the direct, multicomponent synthesis of previously unreported 2-(4-acylfuran-2-yl)acetamides <bold>3</bold> starting from readily available 2-propargyl-1,3-dicarbonyl compounds <bold>1</bold>, carbon monoxide, and a secondary amine <bold>2</bold>. In this case, the initially formed 2-ynamide intermediate <bold>I</bold> (formed by <bold>2</bold>-promoted C<emph>sp</emph>-H palladation of <bold>1</bold> followed by CO insertion and nucleophilic displacement by <bold>2</bold>) undergoes 5-<emph>exo</emph>-<emph>dig</emph> intramolecular conjugate addition from the oxygen of enolate moiety resulting from C-2 deprotonation by the basic amine, to give intermediate <bold>II</bold>, whose aromative isomerization eventually leads to 2-(4-acylfuran-2-yl)acetamides <bold>3</bold> (Scheme 2). It is worth noting that, as seen in the reaction of simple alkyl- and arylacetylenes (Scheme 1a) [[<reflink idref="bib27" id="ref22">27</reflink>]], the method is not applicable to the use of primary amines, as these compounds preferentially undergo oxidative carbonylation to ureas under our reaction conditions [[<reflink idref="bib30" id="ref23">30</reflink>]]. Moreover, as already seen for simple 1-alkynes [[<reflink idref="bib27" id="ref24">27</reflink>]], secondary amines of relatively low nucleophilicity (such as alkylarylamines of diarylamines) are not sufficiently reactive to give the reaction.</p> <p>This approach, therefore, allows the direct synthesis of a new subclass of furan derivatives (2-(4-acylfuran-2-yl)acetamides <bold>3</bold>) by the catalytic assembly of very simple building blocks (2-propargyl-1,3-dicarbonyl compounds <bold>1</bold>, amines <bold>2</bold>, CO, and O<subs>2</subs>), with formation of water as benign coproduct.</p> <hd id="AN0172986847-3">2. Results and Discussion</hd> <p>We started our investigation using 3-(prop-2-yn-1-yl)pentane-2,4-dione <bold>1a</bold> as model substrate. The initial reaction was carried out in MeCN (0.10 mmol of <bold>1a</bold> per mL of MeCN) at 100 °C in the presence of PdI<subs>2</subs> (1 mol%), KI (KI:PdI<subs>2</subs> molar ratio = 100) and Et<subs>2</subs>NH <bold>2a</bold> (3 equiv) under 20 atm (at 25 °C) of a 4:1 mixture CO-air. After 15 h, <bold>1a</bold> conversion was complete, and, after column chromatography purification, 2-(4-acetyl-5-methylfuran-2-yl)-<emph>N</emph>,<emph>N</emph>-diethylacetamide <bold>3aa</bold> was recovered in 61% yield (based on starting <bold>1a</bold>), in perfect agreement with our work hypothesis (Table 1, entry 1).</p> <p>After a brief optimization study, in which we varied some reaction parameters (such as solvent, amount of KI and amine, substrate concentration, and total pressure; Table 1), a 72% isolated yield of <bold>3aa</bold> was achieved under conditions similar to those of the first experiment, but with a higher substrate concentration (0.22 mmol of <bold>1a</bold> per mL of MeCN) and using 4 equiv of Et<subs>2</subs>NH <bold>2a</bold> (Table 2, entry 1). The reaction could also be performed with a lower catalyst loading (0.33 mol% PdI<subs>2</subs>, maintaining the KI:PdI<subs>2</subs> molar ratio = 100), with an acceptable 55% isolated yield of <bold>3aa</bold> (Table 2, entry 2).</p> <p>The reaction was then extended to other secondary amines <bold>2b</bold>–<bold>f</bold> (Table 2, entries 3–11) and different 2-propynyl-1,3-diketones <bold>1b</bold>–<bold>g</bold> (Table 2, entries 12–18). Similar results with respect to the parent reactions (Table 2, entries 1 and 2) were observed with other simple dialkylamines, such as Me<subs>2</subs>NH <bold>2b</bold> (Table 2, entries 3 and 4), Bu<subs>2</subs>NH <bold>2c</bold> (Table 2, entries 5 and 6), and even with sterically hindered <emph>N</emph>-ethylcyclohexylamine <bold>2d</bold> (Table 2, entries 7 and 8). Interestingly, more sterically demanding diisopropylamine <bold>2e</bold> was also reactive, and led to the formation of the corresponding furanacetamide <bold>3ae</bold> in 54% yield with 1 mol% catalyst (Table 2, entry 9). A cyclic amine like morpholine <bold>2f</bold> reacted well and delivered the corresponding product <bold>3af</bold> in either 74% yield (with 1 mol% PdI<subs>2</subs>; Table 2, entry 10) or 61% yield (with 0.33 mol% catalyst; Table 2, entry 11). With Et<subs>2</subs>NH <bold>2a</bold> or morpholine <bold>2f</bold> as the amine, extension of the protocol to other symmetrical 2-propargyl-1,3-diketones <bold>1b</bold>–<bold>e</bold> also led to good results, the corresponding furans being obtained in 66–81% yields with 1 mol% catalyst (Table 2, entries 12, 14, 16, 17) and 58–68% yields with 0.33 mol% catalyst (Table 2, entries 13, 15, 18). Only in the presence of a phenyl group α to the triple bond, as in 1,3-diphenyl-2-(1-phenylprop-2-yn-1-yl)propane-1,3-dione <bold>1f</bold>, a lower product yield was observed, probably for steric reasons (54%, Table 2, entry 19). Clearly, the use of an unsymmetrical diketonic substrate, such as 1-phenyl-2-(prop-2-yn-1-yl)butane-1,3-dione <bold>1g</bold>, afforded a mixture of isomeric products <bold>3gf</bold> and <bold>3gf′</bold>, which could be separated in 48% and 25% isolated yields, respectively (Table 2, entry 20). On the other hand, a selective process was observed with β-keto esters <bold>1h</bold>–<bold>l</bold>, owing to the higher nucleophilicity of the ketonic oxygen with respect to the estereal one [[<reflink idref="bib32" id="ref25">32</reflink>]], with selective formation of alkyl 5-(2-(dialkylamino)-2-oxoethyl)-2-alkylfuran-3-carboxylates (Table 2, entries 21–30). The method also worked nicely with 2-acetyl-<emph>N</emph>,<emph>N</emph>-diethylpent-4-ynamide <bold>1m</bold> and 1-phenyl-2-tosylpent-4-yn-1-one <bold>1n</bold>, with formation of 5-(2-(diethylamino)-2-oxoethyl)-<emph>N</emph>,<emph>N</emph>-diethyl-2-methylfuran-3-carboxamide <bold>3ma</bold> and <emph>N</emph>,<emph>N</emph>-dibutyl-2-(5-phenyl-4-tosylfuran-2-yl)acetamide <bold>3nc</bold>, respectively, in 57–72% yields (Table 2, entries 31–33).</p> <hd id="AN0172986847-4">3. Materials and Methods</hd> <p></p> <hd id="AN0172986847-5">3.1. General Experimental Methods</hd> <p>Melting points were measured with a Leitz Laborlux 12 POL polarizing optical microscope (Leitz Italia GmbH/Srl, Lana, BZ, Italy) and are uncorrected. <sups>1</sups>H NMR and <sups>13</sups>C NMR spectra were recorded at 25 °C in CDCl<subs>3</subs> at 500 MHz and 125 MHz, respectively, with Me<subs>4</subs>Si as internal standard using Bruker DPX Avance 300 and Bruker DPX Avance 500 NMR Spectrometers (Bruker Italia s.r.l., Milano, Italy); chemical shifts (δ) and coupling constants (<emph>J</emph>) are given in ppm and in Hz, respectively. IR spectra were taken with a JASCO FT-IR 4200 spectrometer (Jasco Europe s.r.l., Cremella, Lecco, Italy). All reactions were analyzed by TLC on silica gel 60 F<subs>254</subs> and by GC-MS analysis using a Shimadzu QP-2010 GC–MS apparatus (Shimadzu Italia s.r.l., Milano, Italy) at 70 eV ionization voltage equipped with a 95% methyl polysiloxane-5% phenyl polysiloxane capillary column (30 m × 0.25 mm, 0.25 μm). Column chromatography was performed on silica gel 60 (Merck, 70–230 mesh; Merck Life Science s.r.l., Milano, Italy). Evaporation refers to the removal of solvent under reduced pressure. The HRMS spectra were taken on an Agilent 1260 Infinity UHD accurate-mass Q-TOF-MS mass spectrometer (Agilent Technologies, Santa Clara, CA, USA), equipped with an electrospray ion source (ESI) operated in dual ion mode. A total of 10 μL of the sample solutions (CH<subs>3</subs>OH) were introduced by continuous infusion at a flow rate of 200 L min<sups>−1</sups> with the aid of a syringe pump. Experimental conditions were performed as follows: capillary voltage, 4000 V; nebulizer pressure, 20 psi; flow rate of drying gas, 10 L/min; temperature of sheath gas, 325 °C; flow rate of sheath gas, 10 L/min; skimmer voltage, 60 V; OCT1 RF Vpp, 750 V; fragmentor voltage, 170 V. The spectra data were recorded in the <emph>m</emph>/<emph>z</emph> range of 100–1000 Da in a centroid pattern of full-scan MS analysis mode. The MS/MS data of the selected compounds were obtained by regulating diverse collision energy (18–45 eV).</p> <hd id="AN0172986847-6">3.2. Preparation of Substrates</hd> <p>Substrates <bold>1</bold> were prepared and characterized as described in Supplementary Materials. All other materials were commercially available and were used without further purification.</p> <hd id="AN0172986847-7">3.3. General Procedure for the Synthesis of 2-(4-Acylfuran-2-yl)acetamides 3</hd> <p>A 35 mL stainless steel autoclave was charged in the presence of air with PdI<subs>2</subs> (1.2 mg, 3.3 × 10<sups>−3</sups> mmol, or 3.6 mg, 1.0 × 10<sups>−2</sups> mmol; see Table 1), KI (55 mg, 0.33 mmol or 166 mg, 1.0 mmol), a solution of <bold>1</bold> [1.0 mmol; <bold>1a</bold>, 138 mg; <bold>1b</bold>, 166 mg; <bold>1c</bold>, 150 mg; <bold>1d</bold>, 152 mg; <bold>1e</bold>, 262 mg; <bold>1f</bold>, 338 mg; <bold>1g</bold>, 200 mg; <bold>1h</bold>, 154 mg; <bold>1i</bold>, 168 mg; <bold>1j</bold>, 196 mg; <bold>1k</bold>, 196 mg; <bold>1l</bold>, 230 mg; <bold>1m</bold>, 195 mg; <bold>1n</bold>, 312 mg] in anhydrous CH<subs>3</subs>CN (5.0 mL), and the amine <bold>2</bold> [4.0 mmol; <bold>2a</bold>, 292 mg; <bold>2b</bold>, 180 mg (2 mL of a 2 M solution in THF); <bold>2c</bold>, 516 mg; <bold>2d</bold>, 508 mg; <bold>2e</bold>, 404 mg; <bold>2f</bold>, 348 mg]. The autoclave was sealed and, while the mixture was stirred, the autoclave was pressurized with CO (16 atm) and air (up to 20 atm). After being stirred at 100 °C for 15 h, the autoclave was cooled, degassed, and opened. After evaporation of the solvent, products <bold>3</bold> were purified by column chromatography on silica gel using as eluent hexane-AcOEt from 8:2 to 6:4.</p> <hd id="AN0172986847-8">3.3.1. 2-(4-Acetyl-5-methylfuran-2-yl)- N , N -diethylacetamide (3aa)</hd> <p>Yield: 170 mg, starting from 138 mg of <bold>1a</bold> (72%) (Table 1, entry 1). Yellow oil. IR (film): ν = 1667 (s), 1651 (s), 1566 (m), 1435 (m), 1404 (w), 1234 (m), 1134 (w), 949 (m), 795 (w) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 6.45 (s, 1 H), 3.67 (s, 2 H), 3.44–3.35 (m, 4 H), 2.55 (s, 3 H), 2.37 (s, 3 H), 1.20 (t, <emph>J</emph> = 7.1, 3 H), 1.15 (t, <emph>J</emph> = 7.1, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 194.2, 167.3, 157.7, 147.2, 122.2, 108.3, 42.5, 40.5, 33.2, 29.1, 14.34, 14.31, 12.9; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 237 (M<sups>+</sups>, 10), 137 (<reflink idref="bib9" id="ref26">9</reflink>), 100 (<reflink idref="bib100" id="ref27">100</reflink>), 72 (<reflink idref="bib71" id="ref28">71</reflink>); HRMS (ESI—TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>13</subs>H<subs>19</subs>NNaO<subs>3</subs><sups>+</sups> 260.1257; Found 260.1256.</p> <hd id="AN0172986847-9">3.3.2. 2-(4-Acetyl-5-methylfuran-2-yl)- N , N -dimethylacetamide (3ab)</hd> <p>Yield: 140 mg, starting from 138 mg of <bold>1a</bold> (67%) (Table 1, entry 3). Yellow oil, IR (film): ν = 1686 (s), 1651 (s), 1557 (m), 1508 (w), 1396 (m), 1234 (m), 1138 (m), 1061 (w), 945 (m) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 6.44 (s, 1 H), 3.69 (s, 2 H), 3.10 (s, 3 H), 2.99 (m, 3 H), 2.55 (s, 3 H), 2.37 (s, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 194.2, 168.3, 157.8, 146.9, 122.3, 108.4, 37.7, 35.7, 33.4, 29.1, 14.3; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 209 (M<sups>+</sups>, 17), 137 (<reflink idref="bib22" id="ref29">22</reflink>), 72 (<reflink idref="bib100" id="ref30">100</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>11</subs>H<subs>15</subs>NNaO<subs>3</subs><sups>+</sups> 232.0944; Found 232.0948.</p> <hd id="AN0172986847-10">3.3.3. 2-(4-Acetyl-5-methylfuran-2-yl)- N , N -dibutylacetamide (3ac)</hd> <p>Yield: 219 mg, starting from 138 mg of <bold>1a</bold> (75%) (Table 1, entry 5). Yellow oil. IR (film): ν = 1678 (s), 1643 (s), 1570 (m), 1454 (m), 1431 (m), 1373 (w), 1223 (m), 1138 (w), 1114 (w), 945 (m) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 6.44 (s, 1 H), 3.67 (s, 2 H), 3.37–3.32 (m, 2 H), 3.31–3.26 (m, 2 H), 2.55 (s, 3 H), 2.37 (s, 3 H), 1.61–1.49 (m, 4 H), 1.40–1.27 (m, 4 H), 0.96 (t, <emph>J</emph> = 7.3, 3 H), 0.92 (t, <emph>J</emph> = 7.3, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 194.2, 167.7, 157.7, 147.3, 122.3, 108.3, 48.3, 46.1, 33.3, 33.2, 31.3, 29.8, 29.1, 20.3, 20.1, 14.4, 13.9; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 293 (M<sups>+</sups>, 4), 156 (<reflink idref="bib38" id="ref31">38</reflink>), 137 (<reflink idref="bib11" id="ref32">11</reflink>), 100 (<reflink idref="bib27" id="ref33">27</reflink>), 57 (<reflink idref="bib100" id="ref34">100</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>17</subs>H<subs>27</subs>NNaO<subs>3</subs><sups>+</sups> 316.1883; Found 316.1898.</p> <hd id="AN0172986847-11">3.3.4. 2-(4-Acetyl-5-methylfuran-2-yl)- N -cyclohexyl- N -ethylacetamide (Mixture of Rotamers...</hd> <p>Yield: 215 mg, starting from 138 mg of <bold>1a</bold> (74%) (Table 1, entry 7). Yellow oil. IR (film): ν = 1674 (m), 1643 (s), 1570 (w), 1427 (m), 1369 (w), 1234 (m), 1103 (w), 895 (w) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 6.45 [s, 1 H (A or B)], 6.44 [s, 1 H (B or A)], 4.31 [tt, <emph>J</emph> = 11.7, 3.5, 1 H (B)], 3.71 [s, 2 H (A)], 3.66 [s, 2 H (B)], 3.62 [tt, <emph>J</emph> = 11.7, 3.5, 1 H (A)], 3.37–3.27 [m, 2 H (A) + 2 H (B)], 2.56 [s, 3 H (A)], 2.55 [s, 3 H (B)], 2.37 [s, 3 H (A) + 3 H (B)], 1.90–1.60 [m, 4 H (A) + 4 H (B)], 1.56–1.22 [m, 6 H (A) + 6 H (B)], 1.23 [t, <emph>J</emph> = 7.2, 3 H (B)], 1.15 [t, <emph>J</emph> = 7.0, 3 H (A)]; <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 194.1 (A + B), 167.8 (B), 167.2 (A), 157.6 (A + B), 147.5 (A + B), 122.2 (A + B), 108.2 (A + B), 58.0 (A), 57.9 (B), 54.4 (A), 54.3 (B), 38.4 (B), 36.9 (A), 34.1 (A), 33.5 (B), 31.8 (A), 30.9 (B), 29.1 (A + B), 25.9 (A + B), 25.6 (B), 25.2 (A), 16.8 (A + B), 14.8 (A), 14.3 (B); GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 291 (M<sups>+</sups>, 3), 154 (<reflink idref="bib49" id="ref35">49</reflink>), 137 (<reflink idref="bib14" id="ref36">14</reflink>), 123 (<reflink idref="bib4" id="ref37">4</reflink>), 95 (<reflink idref="bib8" id="ref38">8</reflink>), 83 (<reflink idref="bib100" id="ref39">100</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>17</subs>H<subs>25</subs>NNaO<subs>3</subs><sups>+</sups> 314.1727; Found 314.1712.</p> <hd id="AN0172986847-12">3.3.5. 2-(4-Acetyl-5-methylfuran-2-yl)- N , N -diisopropylacetamide (3ae)</hd> <p>Yield: 143 mg, starting from 138 mg of <bold>1a</bold> (54%) (Table 1, entry 9). Yellow oil. IR (film): ν = 1651 (s), 1643 (s), 1566 (m), 1454 (m), 1369 (m), 1339 (w), 1231 (w), 1211 (m), 1041 (w), 945 (w) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 6.43 (s, 1 H), 4.03 (heptuplet, <emph>J</emph> = 6.6, 1 H), 3.66 (s, 2 H), 3.57–3.44 (m, 1 H), 2.57 (s, 3 H), 2.37 (s, 3 H), 1.40 (d, <emph>J</emph> = 6.7), 1.21 (d, <emph>J</emph> = 6.6); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 194.2, 166.9, 152.6, 147.6, 122.3, 108.2, 49.3, 46.1, 35.5, 29.1, 20.9, 20.6, 20.5, 14.4, 14.3; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 265 (M<sups>+</sups>, 2), 137 (<reflink idref="bib19" id="ref40">19</reflink>), 128 (<reflink idref="bib53" id="ref41">53</reflink>), 96 (<reflink idref="bib7" id="ref42">7</reflink>), 86 (<reflink idref="bib94" id="ref43">94</reflink>), 43 (<reflink idref="bib100" id="ref44">100</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>15</subs>H<subs>23</subs>NNaO<subs>3</subs><sups>+</sups> 288.1570; Found 288.1561.</p> <hd id="AN0172986847-13">3.3.6. 2-(4-Acetyl-5-methylfuran-2-yl)-1-morpholinoethan-1-one (3af)</hd> <p>Yield: 186 mg, starting from 138 mg of <bold>1a</bold> (74%) (Table 1, entry 10). Yellow oil. IR (film): ν = 1667 (s), 1651 (s), 1566 (m), 1435 (m), 1366 (w), 1273 (w), 1227 (m), 1111 (m), 1042 (w), 964 (w), 772 (m) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 6.45 (s, 1 H), 3.74–3.62 (m, 6 H), 3.70 (s, 2 H), 3.57–3.53 (m, 2 H), 2.56 (s, 3 H), 2.38 (s, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 194.0, 166.8, 157.8, 146.5, 122.3, 108.5, 66.7, 66.5, 46.6, 42.3, 33.1, 29.1, 14.3; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 251 (M<sups>+</sups>, 20), 137 (<reflink idref="bib33" id="ref45">33</reflink>), 114 (<reflink idref="bib100" id="ref46">100</reflink>), 70 (<reflink idref="bib76" id="ref47">76</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>13</subs>H<subs>17</subs>NNaO<subs>4</subs><sups>+</sups> 274.1050; Found 274.1050.</p> <hd id="AN0172986847-14">3.3.7. N , N -Diethyl-2-(5-ethyl-4-propionylfuran-2-yl)acetamide (3ba)</hd> <p>Yield: 214 mg, starting from 166 mg of <bold>1b</bold> (81%) (Table 1, entry 12). Colorless oil. IR (film): ν = 1674 (s), 1647 (s), 1562 (m), 1458 (m), 1431 (w), 1254 (w), 1219 (m), 1134 (w), 1011 (w), 926 (m) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 6.45 (s, br, 1 H), 3.68 (d, <emph>J</emph> = 0.7, 2 H), 3.42 (q, <emph>J</emph> = 7.1, 2 H), 3.39 (q, <emph>J</emph> = 7.1, 2 H), 2.99 (q, <emph>J</emph> = 7.5, 2 H), 2.72 (q, <emph>J</emph> = 7.3, 2 H), 1.22 (t, <emph>J</emph> = 7.5, 3 H), 1.19 (t, <emph>J</emph> = 7.1, 3 H), 1.15 (t, <emph>J</emph> = 7.1, 3 H), 1.13 (t, <emph>J</emph> = 7.3, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 197.2, 167.4, 162.5, 147.1, 120.8, 107.8, 42.5, 40.5, 34.4, 33.4, 21.6, 14.3, 12.9, 12.1, 7.9; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 265 (M<sups>+</sups>, 16), 165 (<reflink idref="bib5" id="ref48">5</reflink>), 100 (<reflink idref="bib100" id="ref49">100</reflink>), 72 (<reflink idref="bib47" id="ref50">47</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>15</subs>H<subs>23</subs>NNaO<subs>3</subs><sups>+</sups> 288.1570; Found 288.1576.</p> <hd id="AN0172986847-15">3.3.8. N , N -Diethyl-2-(4-oxo-4,5,6,7-tetrahydrobenzofuran-2-yl)acetamide (3ca)</hd> <p>Yield: 167 mg, starting from 150 mg of <bold>1c</bold> (67%) (Table 1, entry 14). Yellow oil. IR (film): ν = 1682 (s), 1667 (s), 1582 (w), 1442 (m), 1366 (w), 1219 (m), 1111 (m), 1003 (m), 772 (w) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 6.44 (s, 1 H), 3.70 (s, 2 H), 3.43–3.33 (m, 4 H), 2.86 (t, <emph>J</emph> = 6.3, 2 H), 2.47 (t, <emph>J</emph> = 6.3, 2 H), 2.16 (quintuplet, <emph>J</emph> = 6.3, 2 H), 1.20 (t, <emph>J</emph> = 7.1, 3 H), 1.14 (t, <emph>J</emph> = 7.1, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 194.4, 167.1, 166.8, 149.9, 122.1, 104.3, 42.5, 40.5, 37.6, 33.5, 23.4, 22.6, 14.3, 12.9; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 249 (M<sups>+</sups>, 10), 149 (<reflink idref="bib6" id="ref51">6</reflink>), 100 (<reflink idref="bib100" id="ref52">100</reflink>), 72 (<reflink idref="bib50" id="ref53">50</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>14</subs>H<subs>19</subs>NNaO<subs>3</subs><sups>+</sups> 272.1257; Found 272.1261.</p> <hd id="AN0172986847-16">3.3.9. 2-(4-Acetyl-3,5-dimethylfuran-2-yl)-1-morpholinoethan-1-one (3df)</hd> <p>Yield: 175 mg, starting from 152 mg of <bold>1d</bold> (66%) (Table 1, entry 16). Yellow solid, mp 90–91 °C. IR (film): ν = 1655 (s), 1558 (w), 1416 (m), 1354 (w), 1304 (w), 1231 (m), 1115 (m), 1072 (w), 1034 (w), 972 (m), 848 (m) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 3.69–3.62 (m, 6 H), 3.63 (s, 2 H), 3.57–3.53 (m, 2 H), 2.53 (s, 3 H), 2.42 (s, 3 H), 2.16 (s, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 194.8, 167.1, 157.3, 142.8, 123.3, 117.2, 66.8, 66.6, 46.5, 42.4, 31.3, 30.9, 15.3, 10.6; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 265 (M<sups>+</sups>, 26), 222 (<reflink idref="bib3" id="ref54">3</reflink>), 151 (<reflink idref="bib100" id="ref55">100</reflink>), 133 (<reflink idref="bib6" id="ref56">6</reflink>), 114 (<reflink idref="bib40" id="ref57">40</reflink>), 70 (<reflink idref="bib30" id="ref58">30</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>14</subs>H<subs>19</subs>NNaO<subs>4</subs><sups>+</sups> 288.1206; Found 288.1216.</p> <hd id="AN0172986847-17">3.3.10. 2-(4-Benzoyl-5-phenylfuran-2-yl)- N , N -diethylacetamide (3ea)</hd> <p>Yield: 245 mg, starting from 262 mg of <bold>1e</bold> (68%) (Table 1, entry 17). Colorless oil. IR (film): ν = 1647 (s), 1551 (w), 1485 (m), 1447 (m), 1381 (w), 1261 (m), 1227 (m), 1134 (w), 1072 (w), 887 (m), 729 (m), 694 (m) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 7.86–7.80 (m, 2 H), 7.68–7.63 (m, 2 H), 7.51–7.45 (m, 1 H), 7.38–7.33 (m, 2 H), 7.30–7.23 (m, 3 H), 6.53 (t, br, 1 H), 3.81 (d, <emph>J</emph> = 0.7, 2 H), 3.46–3.38 (m, 4 H), 1.22 (t, <emph>J</emph> = 7.1. 3 H), 1.16 (t, <emph>J</emph> = 7.1, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 191.7, 167.1, 155.3, 148.5, 138.1, 132.8, 129.7, 128.9, 128.3, 127.7, 127.5, 121.9, 111.6, 42.6, 40.6, 33.6, 14.5, 13.0; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 361 (M<sups>+</sups>, 17), 261 (<reflink idref="bib14" id="ref59">14</reflink>), 105 (<reflink idref="bib21" id="ref60">21</reflink>), 100 (<reflink idref="bib100" id="ref61">100</reflink>), 77 (<reflink idref="bib18" id="ref62">18</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>23</subs>H<subs>23</subs>NNaO<subs>3</subs><sups>+</sups> 384.1570; Found 384.1580.</p> <hd id="AN0172986847-18">3.3.11. 2-(4-Benzoyl-3,5-diphenylfuran-2-yl)- N , N -diethylacetamide (3fa)</hd> <p>Yield: 235 mg, starting from 338 mg of <bold>1f</bold> (54%) (Table 1, entry 19). Colorless oil. IR (film): ν = 1647 (s), 1597 (w), 1489 (w), 1447 (m), 1381 (w), 1335 (w), 1254 (m), 1126 (w), 1077 (w), 899 (m), 733 (m), 694 (m) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 7.85–7.77 (m, 2 H), 7.62–7.56 (m, 2 H), 7.41–7.10 (m, 11 H), 3.80 (s, 2 H), 3.46 (q, <emph>J</emph> = 7.1, 2 H), 3.35 (q, <emph>J</emph> = 7.1, 2 H), 1.18 (t, <emph>J</emph> = 7.1. 3 H), 1.15 (t, <emph>J</emph> = 7.1, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 193.6, 167.6, 151.9, 145.5, 137.3, 133.3, 131.6, 129.90, 129.71, 129.3, 128.43, 128.36, 128.25, 127.4, 126.5, 125.7, 121.8, 42.4, 40.7, 32.1, 14.3, 13.1; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 437 (M<sups>+</sups>, 40), 337 (<reflink idref="bib67" id="ref63">67</reflink>), 259 (<reflink idref="bib2" id="ref64">2</reflink>), 202 (<reflink idref="bib3" id="ref65">3</reflink>), 105 (<reflink idref="bib100" id="ref66">100</reflink>), 100 (<reflink idref="bib77" id="ref67">77</reflink>), 72 (<reflink idref="bib31" id="ref68">31</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>29</subs>H<subs>27</subs>NNaO<subs>3</subs><sups>+</sups> 460.1883; Found 460.1901.</p> <hd id="AN0172986847-19">3.3.12. 2-(4-Benzoyl-5-methylfuran-2-yl)-1-morpholinoethan-1-one (3gf)</hd> <p>Yield: 150 mg, starting from 200 mg of <bold>1g</bold> (48%) (Table 1, entry 20). Colorless oil. IR (film): ν = 1647 (s), 1566 (m), 1447 (m), 1273 (w), 1231 (m), 1115 (m), 1038 (w), 903 (m), 729 (m) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 7.81–7.75 (m, 2 H), 7.58–7.52 (m, 1 H), 7.49–7.43 (m, 2 H), 6.41 (s, 1 H), 3.72 (s, 2 H), 3.71–3.63 (m, 6 H), 3.57–3.53 (m, 2 H), 2.50 (s, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 191.1, 166.8, 159.0, 146.4, 139.1, 132.2, 128.9, 128.4, 121.4, 109.9, 66.8, 66.6, 46.7, 42.4, 33.3, 14.2; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 313 (M<sups>+</sups>, 35), 270 (<reflink idref="bib2" id="ref69">2</reflink>), 199 (<reflink idref="bib42" id="ref70">42</reflink>), 114 (<reflink idref="bib100" id="ref71">100</reflink>), 105 (<reflink idref="bib11" id="ref72">11</reflink>), 70 (<reflink idref="bib55" id="ref73">55</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>18</subs>H<subs>19</subs>NNaO<subs>4</subs><sups>+</sups> 336.1206; Found 336.1209.</p> <hd id="AN0172986847-20">3.3.13. 2-(4-Acetyl-5-phenylfuran-2-yl)-1-morpholinoethan-1-one (3gf′)</hd> <p>Yield: 78 mg, starting from 200 mg of <bold>1g</bold> (25%) (Table 1, entry 20). Colorless oil. IR (film): ν = 1651 (s), 1543 (w), 1447 (m), 1381 (w), 1273 (w), 1234 (m), 1115 (s) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 7.87–7.80 (m, 2 H), 7.48–7.40 (m, 3 H), 6.64 (t, br, <emph>J</emph> = 0.7, 1 H), 3.80 (d, <emph>J</emph> = 0.7, 2 H), 3.73–3.64 (m, 6 H), 3.60–3.56 (m, 2 H), 2.38 (s, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 193.8, 166.6, 156.1, 147.8, 129.8, 129.7, 128.5, 128.3, 123.2, 110.5, 66.8, 66.6, 46.7, 42.4, 33.3, 29.8; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 313 (M<sups>+</sups>, 45), 199 (<reflink idref="bib100" id="ref74">100</reflink>), 181 (<reflink idref="bib6" id="ref75">6</reflink>), 157 (<reflink idref="bib5" id="ref76">5</reflink>), 128 (<reflink idref="bib14" id="ref77">14</reflink>), 114 (<reflink idref="bib98" id="ref78">98</reflink>), 105 (<reflink idref="bib13" id="ref79">13</reflink>), 70 (<reflink idref="bib61" id="ref80">61</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>18</subs>H<subs>19</subs>NNaO<subs>4</subs><sups>+</sups> 336.1206; Found 336.1217.</p> <hd id="AN0172986847-21">3.3.14. Methyl 5-(2-(Diethylamino)-2-oxoethyl)-2-methylfuran-3-carboxylate (3ha)</hd> <p>Yield: 177 mg, starting from 154 mg of <bold>1h</bold> (70%) (Table 1, entry 21). Yellow oil. IR (film): ν = 1713 (s), 1651 (s), 1582 (w), 1451 (m), 1396 (w), 1219 (m), 1088 (m), 995 (w), 779 (m) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 6.43 (s, 1 H), 3.79 (s, 3 H), 3.65 (s, 2 H), 3.40 (q, <emph>J</emph> = 7.1, 2 H), 3.36 (q, <emph>J</emph> = 7.1, 2 H), 2.54 (s, 3 H), 1.18 (t, <emph>J</emph> = 7.1), 1.14 (t, <emph>J</emph> = 7.1, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 167.3, 164.5, 158.7, 147.3, 114.1, 108.4, 51.2, 42.5, 40.5, 33.5, 14.3, 13.7, 12.9; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 253 (M<sups>+</sups>, 9), 222 (<reflink idref="bib5" id="ref81">5</reflink>), 153 (<reflink idref="bib4" id="ref82">4</reflink>), 121 (<reflink idref="bib12" id="ref83">12</reflink>), 100 (<reflink idref="bib100" id="ref84">100</reflink>), 72 (<reflink idref="bib55" id="ref85">55</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>13</subs>H<subs>19</subs>NNaO<subs>4</subs><sups>+</sups> 276.1206; Found 276.1218.</p> <hd id="AN0172986847-22">3.3.15. Ethyl 5-(2-(Diethylamino)-2-oxoethyl)-2-methylfuran-3-carboxylate (3ia)</hd> <p>Yield: 184 mg, starting from 168 mg of <bold>1i</bold> (69%) (Table 1, entry 23). Colorless oil. IR (film): ν = 1713 (s), 1647 (s), 1578 (w), 1466 (m), 1381 (m), 1215 (s), 1099 (w), 1061 (m), 783 (m) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 6.43 (s, 1 H), 4.26 (q, <emph>J</emph> = 7.1), 3.64 (s, 2 H), 3.45–3.32 (m, 4 H), 2.53 (s, 3 H), 1.32 (t, <emph>J</emph> = 7.1. 3 H), 1.18 (t, <emph>J</emph> = 7.1, 3 H), 1.14 (t, <emph>J</emph> = 7.1, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 167.4, 164.1, 158.4, 147.3, 114.6, 108.5, 60.0, 42.5, 40.5, 33.5, 14.38, 14.36, 13.7, 12.9; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 267 (M<sups>+</sups>, 30), 222 (<reflink idref="bib23" id="ref86">23</reflink>), 167 (<reflink idref="bib10" id="ref87">10</reflink>), 139 (<reflink idref="bib10" id="ref88">10</reflink>), 121 (<reflink idref="bib22" id="ref89">22</reflink>), 100 (<reflink idref="bib100" id="ref90">100</reflink>), 72 (<reflink idref="bib99" id="ref91">99</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>14</subs>H<subs>21</subs>NNaO<subs>4</subs><sups>+</sups> 290.1363; Found 290.1368.</p> <hd id="AN0172986847-23">3.3.16. Ethyl 5-(2-(Diethylamino)-2-oxoethyl)-2-propylfuran-3-carboxylate (3ja)</hd> <p>Yield: 200 mg, starting from 196 mg of <bold>1j</bold> (68%) (Table 1, entry 25). Colorless oil. IR (film): ν = 1713 (s), 1647 (s), 1578 (w), 1462 (m), 1431 (m), 1381 (w), 1215 (m), 1096 (m), 1050 (m), 779 (m) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 6.45 (s, br, 1 H), 4.26 (q, <emph>J</emph> = 7.1, 2 H), 3.66 (d, <emph>J</emph> = 0.6, 2 H), 3.42–3.34 (m, 4 H), 2.93 (t, <emph>J</emph> = 7.4, 2 H), 1.68 (sextuplet, <emph>J</emph> = 7.4, 2 H), 1.32 (t, <emph>J</emph> = 7.1, 3 H), 1.17 (t, <emph>J</emph> = 7.1, 3 H), 1.13 (t, <emph>J</emph> = 7.1, 3 H), 0.94 (t, <emph>J</emph> = 7.4, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 167.3, 164.0, 162.4, 147.2, 114.2, 108.3, 60.0, 42.5, 40.4, 33.6, 29.5, 21.6, 14.3, 13.8, 13.7, 12.9; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 295 (M<sups>+</sups>, 6), 250 (<reflink idref="bib3" id="ref92">3</reflink>), 195 (<reflink idref="bib3" id="ref93">3</reflink>), 100 (<reflink idref="bib100" id="ref94">100</reflink>), 72 (<reflink idref="bib37" id="ref95">37</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>16</subs>H<subs>25</subs>NNaO<subs>4</subs><sups>+</sups> 318.1676; Found 318.1683.</p> <hd id="AN0172986847-24">3.3.17. Ethyl 5-(2-(Diethylamino)-2-oxoethyl)-2-isopropylfuran-3-carboxylate (3ka)</hd> <p>Yield: 209 mg, starting from 196 mg of <bold>1k</bold> (71%) (Table 1, entry 27). Colorless oil. IR (film): ν = 1713 (s), 1647 (s), 1578 (w), 1381 (m), 1458 (m), 1365 (w), 1215 (m), 1130 (w), 1099 (w), 1061 (m), 783 (m) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 6.44 (s, 1 H), 4.26 (q, <emph>J</emph> = 7.1, 2 H), 3.73 (heptuplet, <emph>J</emph> = 7.0, 1 H), 3.67 (s, 2H), 3.45–3.35 (m, 4 H), 1.32 (t, <emph>J</emph> = 7.1. 3 H), 1.25 (d, <emph>J</emph> = 7.0, 6 H), 1.17 (t, <emph>J</emph> = 7.1, 3 H), 1.14 (t, <emph>J</emph> = 7.1, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 167.3, 166.4, 164.0, 146.9, 112.5, 108.2, 59.9, 42.5, 40.4, 33.7, 27.2, 20.78, 20.75, 14.3, 12.9; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 295 (M<sups>+</sups>, 7), 250 (<reflink idref="bib4" id="ref96">4</reflink>), 195 (<reflink idref="bib3" id="ref97">3</reflink>), 125 (<reflink idref="bib2" id="ref98">2</reflink>), 100 (<reflink idref="bib100" id="ref99">100</reflink>), 72 (<reflink idref="bib38" id="ref100">38</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>16</subs>H<subs>25</subs>NNaO<subs>4</subs><sups>+</sups> 318.1676; Found 318.1675.</p> <hd id="AN0172986847-25">3.3.18. Benzyl 5-(2-(Diethylamino)-2-oxoethyl)-2-methylfuran-3-carboxylate (3la)</hd> <p>Yield: 220 mg, starting from 230 mg of <bold>1l</bold> (67%) (Table 1, entry 29). Colorless oil. IR (film): ν = 1713 (s), 1647 (s), 1585 (w), 1454 (m), 1431 (m), 1381 (w), 1365 (w), 1219 (m), 1076 (m) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 7.41–7.29 (m, 5 H), 6.47 (s, 1 H), 5.25 (s, 2 H), 3.64 (s, 2 H), 3.39 (q, <emph>J</emph> = 7.1, 2 H), 3.35 (q, <emph>J</emph> = 7.1, 2 H), 2.55 (s, 3 H), 1.17 (t, <emph>J</emph> = 7.1, 3 H), 1.13 (t, <emph>J</emph> = 7.1, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 167.4, 163.9, 159.0, 147.4, 136.4, 128.6, 128.2, 128.1, 114.2, 108.6, 65.9, 42.5, 40.5, 33.5, 14.4, 14.0, 13.0; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 329 (M<sups>+</sups>, 5), 212 (<reflink idref="bib6" id="ref101">6</reflink>), 194 (<reflink idref="bib2" id="ref102">2</reflink>), 100 (<reflink idref="bib100" id="ref103">100</reflink>), 91 (<reflink idref="bib18" id="ref104">18</reflink>), 72 (<reflink idref="bib35" id="ref105">35</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>19</subs>H<subs>23</subs>NNaO<subs>4</subs><sups>+</sups> 352.1519; Found 352.1543.</p> <hd id="AN0172986847-26">3.3.19. 5-(2-(Diethylamino)-2-oxoethyl)- N , N -diethyl-2-methylfuran-3-carboxamide (3ma)</hd> <p>Yield: 168 mg, starting from 195 mg of <bold>1m</bold> (57%) (Table 1, entry 31). Colorless oil, IR (film): ν = 1632 (s), 1454 (m), 1381 (w), 1362 (w), 1269 (w), 1072 (w), cm<sups>−1</sups>; <sups>1</sups>H NMR (300 MHz, CDCl<subs>3</subs>): δ = 6.13 (s, 1 H), 3.66 (s, 2 H), 3.48–3.32 (m, 8 H), 2.34 (s, 3 H), 1.23–1.10 (m, 12 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 167.5, 165.8, 152.0, 146.9, 117.4, 107.4, 42.5, 40.3, 39.2, 33.7, 14.3, 12.9; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 294 (M<sups>+</sups>, 10), 222 (<reflink idref="bib5" id="ref106">5</reflink>), 194 (<reflink idref="bib6" id="ref107">6</reflink>), 152 (<reflink idref="bib7" id="ref108">7</reflink>), 123 (<reflink idref="bib12" id="ref109">12</reflink>), 100 (<reflink idref="bib100" id="ref110">100</reflink>), 72 (<reflink idref="bib56" id="ref111">56</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>16</subs>H<subs>26</subs>N<subs>2</subs>NaO<subs>3</subs><sups>+</sups> 317.1836; Found 317.1837.</p> <hd id="AN0172986847-27">3.3.20. N , N -Dibutyl-2-(5-phenyl-4-tosylfuran-2-yl)acetamide (3nc)</hd> <p>Yield: 336 mg, starting from 312 mg of <bold>1n</bold> (72%) (Table 1, entry 32). Yellow oil. IR (film): ν = 1643 (s), 1597 (w), 1551 (w), 1485 (m), 1454 (m), 1319 (s), 1254 (w), 1215 (w), 1153 (s), 1103 (m), 930 (w), 814 (w), 698 (m) cm<sups>−1</sups>; <sups>1</sups>H NMR (500 MHz, CDCl<subs>3</subs>): δ = 7.85–7.81 (m, 2 H), 7.69–7.65 (m, 2 H), 7.42–7.38 (m, 3 H), 7.20–7.16 (m, 2 H), 6.64 (t,<emph> J</emph> = 0.8, 1 H), 3.73 (d, <emph>J</emph> = 0.8, 2 H), 3.36–3.31 (m, 2 H), 3.28–3.24 (m, 2 H), 2.35 (s, 3 H), 1.59–1.48 (m, 4 H), 1.36–1.22 (m, 4 H), 0.93 (t, <emph>J</emph> = 7.4, 3 H), 0.91 (t, <emph>J</emph> = 7.4, 3 H); <sups>13</sups>C NMR (125 MHz, CDCl<subs>3</subs>): δ = 166.8, 154.1, 148.9, 144.1, 139.0, 129.8, 129.6, 128.7, 128.4, 128.2, 127.2, 110.3, 48.3, 46.1, 33.4, 31.3, 29.7, 21.5, 20.2, 20.1, 13.8; GC-MS (EI): <emph>m</emph>/<emph>z</emph> = 467 (M<sups>+</sups>, 10), 311 (<reflink idref="bib9" id="ref112">9</reflink>), 253 (<reflink idref="bib2" id="ref113">2</reflink>), 207 (<reflink idref="bib8" id="ref114">8</reflink>), 156 (<reflink idref="bib100" id="ref115">100</reflink>), 128 (<reflink idref="bib11" id="ref116">11</reflink>), 100 (<reflink idref="bib39" id="ref117">39</reflink>), 57 (<reflink idref="bib68" id="ref118">68</reflink>); HRMS (ESI-TOF) <emph>m</emph>/<emph>z</emph>: [M + Na]<sups>+</sups> Calcd. for C<subs>27</subs>H<subs>33</subs>NNaO<subs>4</subs>S<sups>+</sups> 490.2023; Found 490.2037.</p> <hd id="AN0172986847-28">3.4. Synthesis of 2-(4-Benzoyl-5-phenylfuran-2-yl)-N,N-diethylacetamide (3ea) in Larger Scale</hd> <p>A 250 mL stainless steel autoclave was charged in the presence of air with PdI<subs>2</subs> (8.6 mg, 2.4 × 10<sups>−2</sups> mmol), KI (398 mg, 2.4 mmol), a solution of 1,3-diphenyl-2-(prop-2-yn-1-yl)propane-1,3-dione <bold>1e</bold> (627 mg, 2.4 mmol) in anhydrous CH<subs>3</subs>CN (12 mL), and diethylamine <bold>2a</bold> (700 mg, 9.6 mmol). The autoclave was sealed and, while the mixture was stirred, the autoclave was pressurized with CO (16 atm) and air (up to 20 atm). After being stirred at 100 °C for 15 h, the autoclave was cooled, degassed, and opened. After evaporation of the solvent, product <bold>3ea</bold> were purified by column chromatography on silica gel using as eluent hexane-AcOEt from 8:2 to 6:4 (yield: 586 mg, 68%).</p> <hd id="AN0172986847-29">4. Conclusions</hd> <p>In conclusion, we have reported the synthesis of a previously unreported subclass of furan derivatives (2-(4-acylfuran-2-yl)acetamides) by a direct catalytic carbonylative approach starting from readily available building blocks (2-propargyl-1,3-dicarbonyl compounds, secondary amines, and oxygen). The process is catalyzed by the simple PdI<subs>2</subs>/KI catalytic system and takes place through an ordered sequence of steps, involving: PdI<subs>2</subs>/KI-catalyzed oxidative monaminocarbonylation of the terminal triple bond of the substrate to give the corresponding 2-ynamide intermediate; base-induced enolization and 5-<emph>exo</emph>-<emph>dig O</emph>-cyclization via intramolecular conjugate addition to the 2-ynamide moiety; double bond shift with aromative isomerization.</p> <hd id="AN0172986847-30">Schemes and Tables</hd> <p>Graph: Scheme 1 PdI2/KI-catalyzed oxidative monoaminocarbonylation of: (a) Simple alkyl- and arylacetylenes to give 2-ynamides [[<reflink idref="bib27" id="ref119">27</reflink>]] and (b) This work: 2-propargyl-1,3-dicarbonyl compounds 1 with amines 2 to 2-(4-acylfuran-2-yl)acetamides 3.</p> <p>Graph: Scheme 2 Mechanistic route leading to 2-(4-acylfuran-2-yl)acetamides 3 by PdI2/KI-catalyzed oxidative aminocarbonylation of 2-propargyl-1,3-dicarbonyl compounds 1 with secondary amines 2 through the formation of 2-ynamide intermediates I and II.</p> <p>Table 1 PdI<subs>2</subs>-catalyzed oxidative aminocarbonylation of 3-(prop-2-yn-1-yl)pentane-2,4-dione <bold>1a</bold> under different conditions <sups>a</sups>.</p> <p> <ephtml> <table><thead><tr><th colspan="9" align="center" style="border-top:solid thin;border-bottom:solid thin"><graphic href="molecules-28-06764-i001.tif" content-type="Graph" /></th></tr><tr><th align="center" style="border-bottom:solid thin">Entry</th><th align="center" style="border-bottom:solid thin">Solvent</th><th align="center" style="border-bottom:solid thin">KI <break />(Equiv)</th><th align="center" style="border-bottom:solid thin">2a <break />(Equiv)</th><th align="center" style="border-bottom:solid thin">Substrate Concn. <sup>b</sup></th><th align="center" style="border-bottom:solid thin">T (°C)</th><th align="center" style="border-bottom:solid thin">P<sub>CO</sub><break />(atm)</th><th align="center" style="border-bottom:solid thin">P<sub>air</sub><break />(atm)</th><th align="center" style="border-bottom:solid thin">Yield of <break />3aa (%) <sup>c</sup></th></tr></thead><tbody><tr><td align="center" valign="middle">1</td><td align="center" valign="middle">MeCN</td><td align="center" valign="middle">1</td><td align="center" valign="middle">3</td><td align="center" valign="middle">0.10</td><td align="center" valign="middle">100</td><td align="center" valign="middle">16</td><td align="center" valign="middle">4</td><td align="center" valign="middle">61</td></tr><tr><td align="center" valign="middle">2</td><td align="center" valign="middle">dioxane</td><td align="center" valign="middle">1</td><td align="center" valign="middle">3</td><td align="center" valign="middle">0.10</td><td align="center" valign="middle">100</td><td align="center" valign="middle">16</td><td align="center" valign="middle">4</td><td align="center" valign="middle">56</td></tr><tr><td align="center" valign="middle">3</td><td align="center" valign="middle">DMA <sup>d</sup></td><td align="center" valign="middle">1</td><td align="center" valign="middle">3</td><td align="center" valign="middle">0.10</td><td align="center" valign="middle">100</td><td align="center" valign="middle">16</td><td align="center" valign="middle">4</td><td align="center" valign="middle">41</td></tr><tr><td align="center" valign="middle">4</td><td align="center" valign="middle">MeCN</td><td align="center" valign="middle">0.5</td><td align="center" valign="middle">3</td><td align="center" valign="middle">0.10</td><td align="center" valign="middle">100</td><td align="center" valign="middle">16</td><td align="center" valign="middle">4</td><td align="center" valign="middle">45</td></tr><tr><td align="center" valign="middle">5</td><td align="center" valign="middle">MeCN</td><td align="center" valign="middle">1</td><td align="center" valign="middle">2</td><td align="center" valign="middle">0.10</td><td align="center" valign="middle">100</td><td align="center" valign="middle">16</td><td align="center" valign="middle">4</td><td align="center" valign="middle">29</td></tr><tr><td align="center" valign="middle">6</td><td align="center" valign="middle">MeCN</td><td align="center" valign="middle">1</td><td align="center" valign="middle">4</td><td align="center" valign="middle">0.10</td><td align="center" valign="middle">100</td><td align="center" valign="middle">16</td><td align="center" valign="middle">4</td><td align="center" valign="middle">68</td></tr><tr><td align="center" valign="middle">7</td><td align="center" valign="middle">MeCN</td><td align="center" valign="middle">1</td><td align="center" valign="middle">5</td><td align="center" valign="middle">0.10</td><td align="center" valign="middle">100</td><td align="center" valign="middle">16</td><td align="center" valign="middle">4</td><td align="center" valign="middle">66</td></tr><tr><td align="center" valign="middle">8</td><td align="center" valign="middle">MeCN</td><td align="center" valign="middle">1</td><td align="center" valign="middle">3</td><td align="center" valign="middle">0.20</td><td align="center" valign="middle">100</td><td align="center" valign="middle">16</td><td align="center" valign="middle">4</td><td align="center" valign="middle">63</td></tr><tr><td align="center" valign="middle">9</td><td align="center" valign="middle">MeCN</td><td align="center" valign="middle">1</td><td align="center" valign="middle">3</td><td align="center" valign="middle">0.05</td><td align="center" valign="middle">100</td><td align="center" valign="middle">16</td><td align="center" valign="middle">4</td><td align="center" valign="middle">51</td></tr><tr><td align="center" valign="middle">10</td><td align="center" valign="middle">MeCN</td><td align="center" valign="middle">1</td><td align="center" valign="middle">3</td><td align="center" valign="middle">0.10</td><td align="center" valign="middle">100</td><td align="center" valign="middle">32</td><td align="center" valign="middle">8</td><td align="center" valign="middle">53</td></tr><tr><td align="center" valign="middle">11 <sup>e</sup></td><td align="center" valign="middle">MeCN</td><td align="center" valign="middle">1</td><td align="center" valign="middle">3</td><td align="center" valign="middle">0.10</td><td align="center" valign="middle">80</td><td align="center" valign="middle">16</td><td align="center" valign="middle">4</td><td align="center" valign="middle">54</td></tr><tr><td align="center" valign="middle">12</td><td align="center" valign="middle">MeCN</td><td align="center" valign="middle">1</td><td align="center" valign="middle">4</td><td align="center" valign="middle">0.20</td><td align="center" valign="middle">100</td><td align="center" valign="middle">16</td><td align="center" valign="middle">4</td><td align="center" valign="middle">72</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin">13 <sup>f</sup></td><td align="center" valign="middle" style="border-bottom:solid thin">MeCN</td><td align="center" valign="middle" style="border-bottom:solid thin">1</td><td align="center" valign="middle" style="border-bottom:solid thin">4</td><td align="center" valign="middle" style="border-bottom:solid thin">0.20</td><td align="center" valign="middle" style="border-bottom:solid thin">100</td><td align="center" valign="middle" style="border-bottom:solid thin">16</td><td align="center" valign="middle" style="border-bottom:solid thin">4</td><td align="center" valign="middle" style="border-bottom:solid thin">55</td></tr></tbody></table> </ephtml> <sups>a</sups> Unless otherwise noted, all reactions were carried out in 15 h, using 1 mol% of PdI<subs>2</subs>. Substrate conversion was quantitative in all cases. <sups>b</sups> Mmol of starting <bold>1a</bold> per mL of solvent. <sups>c</sups> Isolated yield based on starting <bold>1a</bold>. <sups>d</sups> DMA = <emph>N</emph>,<emph>N</emph>-dimethylacetamide. <sups>e</sups> The GLC analysis showed the presence of trace of substrate. <sups>f</sups> The reaction was carried out using 0.33 mol% of PdI<subs>2</subs>.</p> <p>Table 2 Synthesis of 2-(4-acylfuran-2-yl)acetamides <bold>3</bold> by PdI<subs>2</subs>/KI-catalyzed oxidative aminocarbonylation of 2-propargyl-1,3-dicarbonyl compounds <bold>1</bold> with secondary amines <bold>2</bold> <sups>a</sups>.</p> <p> <ephtml> <table><thead><tr><th colspan="6" align="center" style="border-top:solid thin;border-bottom:solid thin"><graphic href="molecules-28-06764-i002.tif" content-type="Graph" /></th></tr><tr><th align="center" style="border-bottom:solid thin">Entry</th><th align="center" style="border-bottom:solid thin">PdI<sub>2</sub> (mol%)</th><th align="center" style="border-bottom:solid thin">1</th><th align="center" style="border-bottom:solid thin">2</th><th align="center" style="border-bottom:solid thin">3</th><th align="center" style="border-bottom:solid thin">Yield of 3 (%) <sup>b</sup></th></tr></thead><tbody><tr><td align="center" valign="middle">1</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><graphic href="molecules-28-06764-i003.tif" content-type="Graph" /></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i004.tif" content-type="Graph" /></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i005.tif" content-type="Graph" /></td><td align="center" valign="middle">72</td></tr><tr><td align="center" valign="middle">2</td><td align="center" valign="middle">0.33</td><td align="center" valign="middle"><bold>1a</bold></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><bold>3aa</bold></td><td align="center" valign="middle">55</td></tr><tr><td align="center" valign="middle">3</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><bold>1a</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i006.tif" content-type="Graph" /></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i007.tif" content-type="Graph" /></td><td align="center" valign="middle">67</td></tr><tr><td align="center" valign="middle">4</td><td align="center" valign="middle">0.33</td><td align="center" valign="middle"><bold>1a</bold></td><td align="center" valign="middle"><bold>2b</bold></td><td align="center" valign="middle"><bold>3ab</bold></td><td align="center" valign="middle">55</td></tr><tr><td align="center" valign="middle">5</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><bold>1a</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i008.tif" content-type="Graph" /></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i009.tif" content-type="Graph" /></td><td align="center" valign="middle">75</td></tr><tr><td align="center" valign="middle">6</td><td align="center" valign="middle">0.33</td><td align="center" valign="middle"><bold>1a</bold></td><td align="center" valign="middle"><bold>2c</bold></td><td align="center" valign="middle"><bold>3ac</bold></td><td align="center" valign="middle">58</td></tr><tr><td align="center" valign="middle">7</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><bold>1a</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i010.tif" content-type="Graph" /></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i011.tif" content-type="Graph" /></td><td align="center" valign="middle">74</td></tr><tr><td align="center" valign="middle">8</td><td align="center" valign="middle">0.33</td><td align="center" valign="middle"><bold>1a</bold></td><td align="center" valign="middle"><bold>2d</bold></td><td align="center" valign="middle"><bold>3ad</bold></td><td align="center" valign="middle">59</td></tr><tr><td align="center" valign="middle">9</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><bold>1a</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i012.tif" content-type="Graph" /></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i013.tif" content-type="Graph" /></td><td align="center" valign="middle">54</td></tr><tr><td align="center" valign="middle">10</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><bold>1a</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i014.tif" content-type="Graph" /></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i015.tif" content-type="Graph" /></td><td align="center" valign="middle">74</td></tr><tr><td align="center" valign="middle">11</td><td align="center" valign="middle">0.33</td><td align="center" valign="middle"><bold>1a</bold></td><td align="center" valign="middle"><bold>2f</bold></td><td align="center" valign="middle"><bold>3af</bold></td><td align="center" valign="middle">61</td></tr><tr><td align="center" valign="middle">12</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><graphic href="molecules-28-06764-i016.tif" content-type="Graph" /></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i017.tif" content-type="Graph" /></td><td align="center" valign="middle">81</td></tr><tr><td align="center" valign="middle">13</td><td align="center" valign="middle">0.33</td><td align="center" valign="middle"><bold>1b</bold></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><bold>3ba</bold></td><td align="center" valign="middle">68</td></tr><tr><td align="center" valign="middle">14</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><graphic href="molecules-28-06764-i018.tif" content-type="Graph" /></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i019.tif" content-type="Graph" /></td><td align="center" valign="middle">67</td></tr><tr><td align="center" valign="middle">15</td><td align="center" valign="middle">0.33</td><td align="center" valign="middle"><bold>1c</bold></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><bold>3ca</bold></td><td align="center" valign="middle">58</td></tr><tr><td align="center" valign="middle">16</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><graphic href="molecules-28-06764-i020.tif" content-type="Graph" /></td><td align="center" valign="middle"><bold>2f</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i021.tif" content-type="Graph" /></td><td align="center" valign="middle">66</td></tr><tr><td align="center" valign="middle">17</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><graphic href="molecules-28-06764-i022.tif" content-type="Graph" /></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i023.tif" content-type="Graph" /></td><td align="center" valign="middle">68</td></tr><tr><td align="center" valign="middle">18</td><td align="center" valign="middle">0.33</td><td align="center" valign="middle"><bold>1e</bold></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><bold>3ea</bold></td><td align="center" valign="middle">62</td></tr><tr><td align="center" valign="middle">19</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><graphic href="molecules-28-06764-i024.tif" content-type="Graph" /></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i025.tif" content-type="Graph" /></td><td align="center" valign="middle">54</td></tr><tr><td align="center" valign="middle">20</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><graphic href="molecules-28-06764-i026.tif" content-type="Graph" /></td><td align="center" valign="middle"><bold>2f</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i027.tif" content-type="Graph" /></td><td align="center" valign="middle">48</td></tr><tr><td align="center" valign="middle" /><td align="center" valign="middle" /><td align="center" valign="middle" /><td align="center" valign="middle" /><td align="center" valign="middle"><graphic href="molecules-28-06764-i028.tif" content-type="Graph" /></td><td align="center" valign="middle">25</td></tr><tr><td align="center" valign="middle">21</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><graphic href="molecules-28-06764-i029.tif" content-type="Graph" /></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i030.tif" content-type="Graph" /></td><td align="center" valign="middle">70</td></tr><tr><td align="center" valign="middle">22</td><td align="center" valign="middle">0.33</td><td align="center" valign="middle"><bold>1h</bold></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><bold>3ha</bold></td><td align="center" valign="middle">58</td></tr><tr><td align="center" valign="middle">23</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><graphic href="molecules-28-06764-i031.tif" content-type="Graph" /></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i032.tif" content-type="Graph" /></td><td align="center" valign="middle">69</td></tr><tr><td align="center" valign="middle">24</td><td align="center" valign="middle">0.33</td><td align="center" valign="middle"><bold>1i</bold></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><bold>3ia</bold></td><td align="center" valign="middle">58</td></tr><tr><td align="center" valign="middle">25</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><graphic href="molecules-28-06764-i033.tif" content-type="Graph" /></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i034.tif" content-type="Graph" /></td><td align="center" valign="middle">68</td></tr><tr><td align="center" valign="middle">26</td><td align="center" valign="middle">0.33</td><td align="center" valign="middle"><bold>1j</bold></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><bold>3ja</bold></td><td align="center" valign="middle">63</td></tr><tr><td align="center" valign="middle">27</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><graphic href="molecules-28-06764-i035.tif" content-type="Graph" /></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i036.tif" content-type="Graph" /></td><td align="center" valign="middle">71</td></tr><tr><td align="center" valign="middle">28</td><td align="center" valign="middle">0.33</td><td align="center" valign="middle"><bold>1k</bold></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><bold>3ka</bold></td><td align="center" valign="middle">60</td></tr><tr><td align="center" valign="middle">29</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><graphic href="molecules-28-06764-i037.tif" content-type="Graph" /></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i038.tif" content-type="Graph" /></td><td align="center" valign="middle">67</td></tr><tr><td align="center" valign="middle">30</td><td align="center" valign="middle">0.33</td><td align="center" valign="middle"><bold>1l</bold></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><bold>3la</bold></td><td align="center" valign="middle">56</td></tr><tr><td align="center" valign="middle">31</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><graphic href="molecules-28-06764-i039.tif" content-type="Graph" /></td><td align="center" valign="middle"><bold>2a</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i040.tif" content-type="Graph" /></td><td align="center" valign="middle">57</td></tr><tr><td align="center" valign="middle">32</td><td align="center" valign="middle">1</td><td align="center" valign="middle"><graphic href="molecules-28-06764-i041.tif" content-type="Graph" /></td><td align="center" valign="middle"><bold>2c</bold></td><td align="center" valign="middle"><graphic href="molecules-28-06764-i042.tif" content-type="Graph" /></td><td align="center" valign="middle">72</td></tr><tr><td align="center" valign="middle" style="border-bottom:solid thin">33</td><td align="center" valign="middle" style="border-bottom:solid thin">0.33</td><td align="center" valign="middle" style="border-bottom:solid thin"><bold>1n</bold></td><td align="center" valign="middle" style="border-bottom:solid thin"><bold>2c</bold></td><td align="center" valign="middle" style="border-bottom:solid thin"><bold>3nc</bold></td><td align="center" valign="middle" style="border-bottom:solid thin">67</td></tr></tbody></table> </ephtml> <sups>a</sups> All reactions were carried out in MeCN as the solvent (0.20 mmol of <bold>1</bold> per mL of MeCN), in the presence of PdI<subs>2</subs> (1 mol% or 0.33 mol%), KI (KI:PdI<subs>2</subs> molar ratio = 100), and amine <bold>2</bold> (4 equiv) for 15 h, under 20 atm of a 4:1 mixture of CO–air. Substrate conversion was quantitative in all cases. <sups>b</sups> Isolated yield based on starting <bold>1</bold>.</p> <hd id="AN0172986847-31">Author Contributions</hd> <p>Conceptualization: B.G. and L.V.; methodology: I.Z., L.V., T.P., R.A., M.A.C., R.M. and B.G.; validation: I.Z., L.V., T.P., R.A., M.A.C. and R.M.; investigation: I.Z., L.V., T.P., R.A., M.A.C. and R.M.; writing—original draft preparation: B.G.; writing—review and editing: B.G.; supervision: B.G. All authors have read and agreed to the published version of the manuscript.</p> <hd id="AN0172986847-32">Institutional Review Board Statement</hd> <p>Not applicable.</p> <hd id="AN0172986847-33">Informed Consent Statement</hd> <p>Not applicable.</p> <hd id="AN0172986847-34">Data Availability Statement</hd> <p>The data presented in this study are available on request from the corresponding authors.</p> <hd id="AN0172986847-35">Conflicts of Interest</hd> <p>The authors declare no conflict of interest.</p> <hd id="AN0172986847-36">Sample Availability</hd> <p>Samples of the compounds <bold>3aa</bold>, <bold>3ab</bold>, <bold>3ac</bold>, <bold>3ad</bold>, <bold>3ae</bold>, <bold>3af</bold>, <bold>3ba</bold>, <bold>3ca</bold>, <bold>3df</bold>, <bold>3ea</bold>, <bold>3fa</bold>, <bold>3gf</bold>, <bold>3gf′</bold>, <bold>3ha</bold>, <bold>3ia</bold>, <bold>3ja</bold>, <bold>3ka</bold>, <bold>3la</bold>, <bold>3ma</bold>, and <bold>3nc</bold> are available from the authors.</p> <hd id="AN0172986847-37">Supplementary Materials</hd> <p>The following supporting information can be downloaded at: https://<ulink href="http://www.mdpi.com/article/10.3390/molecules28196764/s1,">www.mdpi.com/article/10.3390/molecules28196764/s1,</ulink> Preparation and characterization of substrates, Copies of HRMS, <sups>1</sups>H NMR, and <sups>13</sups>C NMR spectra for substrates <bold>1b</bold>, <bold>1d</bold>, <bold>1k</bold>, <bold>1m</bold> and products <bold>3aa</bold>, <bold>3ab</bold>, <bold>3ac</bold>, <bold>3ad</bold>, <bold>3ae</bold>, <bold>3af</bold>, <bold>3ba</bold>, <bold>3ca</bold>, <bold>3df</bold>, <bold>3ea</bold>, <bold>3fa</bold>, <bold>3gf</bold>, <bold>3gf′</bold>, <bold>3ha</bold>, <bold>3ia</bold>, <bold>3ja</bold>, <bold>3ka</bold>, <bold>3la</bold>, <bold>3ma</bold>, <bold>3nc</bold>. References [[<reflink idref="bib33" id="ref120">33</reflink>], [<reflink idref="bib35" id="ref121">35</reflink>], [<reflink idref="bib37" id="ref122">37</reflink>], [<reflink idref="bib39" id="ref123">39</reflink>], [<reflink idref="bib41" id="ref124">41</reflink>]] are cited in Supplementary Materials.</p> <ref id="AN0172986847-38"> <title> Footnotes </title> <blist> <bibl id="bib1" idref="ref1" type="bt">1</bibl> <bibtext> Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.</bibtext> </blist> </ref> <ref id="AN0172986847-39"> <title> References </title> <blist> <bibtext> . Furan Derivatives: Recent Advances and ApplicationsKhan A., Rahman M.M., Ramesh M., Khan S., Asiri A.M. ; IntechOpen: London, UK. 2022</bibtext> </blist> <blist> <bibl id="bib2" idref="ref2" type="bt">2</bibl> <bibtext> Alizadeh M., Jalal M., Hamed K., Saber A., Kheirouri S., Tabrizi F.P.F., Kamari N. Recent Updates on Anti-Inflammatory and Antimicrobial Effects of Furan Natural Derivatives. J. Inflamm. Res. 2020; 13: 451-463. 10.2147/JIR.S262132</bibtext> </blist> <blist> <bibl id="bib3" idref="ref54" type="bt">3</bibl> <bibtext> Sperry J.B., Wright D.L. Furans, Thiophenes and Related Heterocycles in Drug Discovery. Curr. Opin. Drug Discov. Dev. 2005; 8: 723-740. 10.1002/chin.200615242</bibtext> </blist> <blist> <bibl id="bib4" idref="ref3" type="bt">4</bibl> <bibtext> Zhang B., Huo L.J. Recent Advances of Furan and Its Derivatives Based Semiconductor Materials for Organic Photovoltaics. Small Methods. 2021; 5: 2100493. 10.1002/smtd.202100493</bibtext> </blist> <blist> <bibl id="bib5" idref="ref4" type="bt">5</bibl> <bibtext> Deepthi A., Babu B.P., Balachandran A.L. Synthesis of Furans—Recent Advances. Org. Prep. Proced. Int. 2019; 51: 409-442. 10.1080/00304948.2019.1633228</bibtext> </blist> <blist> <bibl id="bib6" idref="ref51" type="bt">6</bibl> <bibtext> Zhang W., Xu W., Zhang F., Li Y. Recent Progress in Synthesis of Polysubstituted Furans. Chin. J. Org. Chem. 2019; 39: 1277-1283. 10.6023/cjoc201811023</bibtext> </blist> <blist> <bibl id="bib7" idref="ref5" type="bt">7</bibl> <bibtext> Duc D.X. Recent Progress in the Synthesis of Furan. Mini-Rev. Org. Chem. 2019; 16: 422-452. 10.2174/1570193X15666180608084557</bibtext> </blist> <blist> <bibl id="bib8" idref="ref6" type="bt">8</bibl> <bibtext> Nejrotti S., Prandi C. Gold Catalysis and Furans: A Powerful Match for Synthetic Connections. Synthesis. 2021; 53: 1046-1060. 10.1055/s-0040-1705996</bibtext> </blist> <blist> <bibl id="bib9" idref="ref26" type="bt">9</bibl> <bibtext> Wang Y., Zhang C., Li S. Progress in Cyclizations of 4-Acetylenic Ketones: Synthesis of Furans and Pyrroles. ChemistrySelect. 2020; 5: 8656-8668. 10.1002/slct.202002379</bibtext> </blist> <blist> <bibtext> Wu X.-F. Transition Metal Catalyzed Furans Synthesis; Elsevier: Amsterdam, The Netherlands. 2015</bibtext> </blist> <blist> <bibtext> Pandey S., Shukla R.K., Volla C.M.R. Access to Polysubstituted Furan Derivatives via Cascade Oxypalladation and Hydrocarbofunctionalization of Unactivated Alkenes. Org. Lett. 2023; 25: 4694-4699. 10.1021/acs.orglett.3c01571</bibtext> </blist> <blist> <bibtext> . Carbon Monoxide in Organic Synthesis: Carbonylation ChemistryGabriele B. ; Wiley-VCH: Weinheim, Germany. 2021. 978-3527347957</bibtext> </blist> <blist> <bibtext> Gabriele B. Chapter 3—Synthesis of Heterocycles by Palladium-Catalyzed Carbonylative Reactions. Advances in Transition-Metal Mediated Heterocyclic SynthesisSolé D., Fernández I. ; Academic Press-Elsevier: London, UK. 2018: 55-127</bibtext> </blist> <blist> <bibtext> Feng J.-B., Wu X.-F. Palladium-Catalyzed Synthesis of Heterocycles. Advances in Heterocyclic ChemistryScriven E.F.V., Ramsden C.A. ; Academic Press: Cambridge, MA, USA. 2017; Volume 121: 207-246</bibtext> </blist> <blist> <bibtext> . Transition Metal Catalyzed Carbonylative Synthesis of HeterocyclesWu X.-F., Beller M. Topics in Heterocyclic Chemistry; Springer: Cham, Switzerland. 2016; Volume 42</bibtext> </blist> <blist> <bibtext> Yin Z., Xu J., Wu X.-F. No Making without Breaking: Nitrogen-Centered Carbonylation Reactions. ACS Catal. 2020; 10: 6510-6531. 10.1021/acscatal.0c01479</bibtext> </blist> <blist> <bibtext> Peng J.-B., Wu F.-P., Wu X.-F. First-row Transition-Metal-Catalyzed Carbonylative Transformations of Carbon Electrophiles. Chem. Rev. 2019; 119: 2090-2127. 10.1021/acs.chemrev.8b00068</bibtext> </blist> <blist> <bibtext> Ma K., Martin B.S., Yin X., Dai M. Natural Product Syntheses via Carbonylative Cyclizations. Nat. Prod. Rep. 2019; 36: 174-219. 10.1039/C8NP00033F</bibtext> </blist> <blist> <bibtext> Perrone S., Troisi L., Salomone A. Heterocycle Synthesis through Pd-Catalyzed Carbonylative Coupling. Eur. J. Org. Chem. 2019; 2019: 4626-4643. 10.1002/ejoc.201900439</bibtext> </blist> <blist> <bibtext> Albano G., Aronica L.A. Potentiality and Synthesis of O- and N-Heterocycles: Pd-Catalyzed Cyclocarbonylative Sonogashira Coupling as a Valuable Route to Phthalans, Isochromans, and Isoindolines. Eur. J. Org. Chem. 2017; 2017: 7204-7221. 10.1002/ejoc.201701041</bibtext> </blist> <blist> <bibtext> Shen C.R., Wu X.-F. Palladium-Catalyzed Carbonylative Multicomponent Reactions. Chem. Eur. J. 2017; 23: 2973-2987. 10.1002/chem.201603623</bibtext> </blist> <blist> <bibtext> Wu X.-F., Neumann H., Beller M. Synthesis of Heterocycles via Palladium-Catalyzed Carbonylations. Chem. Rev. 2013; 113: 1-35. 10.1021/cr300100s</bibtext> </blist> <blist> <bibtext> Gabriele B., Mancuso R., Salerno G. Oxidative Carbonylation as a Powerful Tool for the Direct Synthesis of Carbonylated Heterocycles. Eur. J. Org. Chem. 2012; 2012: 6825-6839. 10.1002/ejoc.201200794</bibtext> </blist> <blist> <bibtext> Gabriele B., Costa M., Salerno G., Chiusoli G.P. A New Synthesis of Trimethyl Aconitate by Palladium-Catalysed Triple Carbonylation of Propynyl Alcohol. J. Chem. Soc. Chem. Commun. 1992; 1992: 1007-1008. 10.1039/c39920001007</bibtext> </blist> <blist> <bibtext> Gabriele B., Costa M., Salerno G., Chiusoli G.P. An Efficient and Selective Palladium-Catalysed Oxidative Dicarbonylation of Alkynes to Alkyl- or Aryl-maleic Esters. J. Chem. Soc. Perkin Trans. 1994; 1: 83-87. 10.1039/p19940000083</bibtext> </blist> <blist> <bibtext> Mancuso R., Della Ca' N., Veltri L., Ziccarelli I., Gabriele B. PdI2-Based Catalysis for Carbonylation Reactions: A Personal Account. Catalysts. 2019; 9610. 10.3390/catal9070610</bibtext> </blist> <blist> <bibtext> Gabriele B., Salerno G., Veltri L., Costa M. Synthesis of 2-Ynamides by Direct Palladium-Catalyzed Oxidative Aminocarbonylation of Alk-1-ynes. J. Organomet. Chem. 2001; 622: 84-88. 10.1016/S0022-328X(00)00795-6</bibtext> </blist> <blist> <bibtext> Ziccarelli I., Mancuso R., Giacalone F., Calabrese C., La Parola V., De Salvo A., Della Ca' N., Gruttadauria M., Gabriele B. Heterogenizing Palladium Tetraiodide Catalyst for Carbonylation Reactions. J. Catal. 2022; 413: 1098-1110. 10.1016/j.jcat.2022.08.007</bibtext> </blist> <blist> <bibtext> Veltri L., Amuso R., Prestia T., Vitale P., Gabriele B. A Multicomponent Approach to Imidazo[2,1-b]thiazole Derivatives by Sequential PdI2/KI-Catalyzed Deprotective Oxidative Aminocarbonylation—Dearomative Cyclization—Aromatization. Eur. J. Org. Chem. 2022; 2022: e202200916. 10.1002/ejoc.202200916</bibtext> </blist> <blist> <bibtext> Gabriele B., Salerno G., Mancuso R., Costa M. Efficient Synthesis of Ureas by Direct Palladium-Catalyzed Oxidative Carbonylation of Amines. J. Org. Chem. 2004; 69: 4741-4750. 10.1021/jo0494634</bibtext> </blist> <blist> <bibtext> Mancuso R., Della Ca' N., Fini F., Carfagna C., Gabriele B. Catalytic Oxidative Carbonylation of Amino Moieties to Ureas, Oxamides, 2-Oxazolidinones, and Benzoxazolones. ChemSusChem. 2015; 8: 2204-2211. 10.1002/cssc.201500343</bibtext> </blist> <blist> <bibtext> Pickersgill F., Marchington A.P., Rayner C.M. Selective Alkylation of β-Ketoester Enolates Using O-Methyl Aminosulfoxonium Salts; the First Example of C-alkylation Using Sulfoxonium Salt Electrophiles. J. Chem. Soc. Chem. Commun. 1994; 1994: 2597-2598. 10.1039/C39940002597</bibtext> </blist> <blist> <bibtext> Misztalewska I., Wilczewska A.Z., Wojtasik O.K., Markiewicz H., Kuchlewski P., Majcher A.M. New Acetylacetone-Polymer Modified Nanoparticles as Magnetically Separable Complexing Agents. RSC Adv. 2015; 5: 100281-100289. 10.1039/C5RA20137C</bibtext> </blist> <blist> <bibtext> Chang M.-Y., Cheng Y.-C., Lu W.-J. Bi(OTf)3-Mediated Cycloisomerization of γ-Alkynyl Arylketones: Application to the Synthesis of Substituted Furans. Org. Lett. 2015; 17: 1264-1267. 10.1021/acs.orglett.5b00246</bibtext> </blist> <blist> <bibtext> Schneider L.M., Schmiedel V.M., Pecchioli T., Lentz D., Merten C., Christmann M. Asymmetric Synthesis of Carbocyclic Propellanes. Org. Lett. 2017; 19: 2310-2313. 10.1021/acs.orglett.7b00836</bibtext> </blist> <blist> <bibtext> Gree R., Park H., Paquette L.A. Regio- and Stereoselective 1,2 Wagner-Meerwein Shifts during Trifluoroacetic acid Catalyzed Isomerization of Unsymmetrically Substituted Tricyclo[3.2.0.02,4]heptanes. J. Am. Chem. Soc. 1980; 102: 4397-4403. 10.1021/ja00533a018</bibtext> </blist> <blist> <bibtext> Sanz R., Miguel D., Martínez A., Álvarez-Gutiérrez J.M., Rodriguez F. Brønsted Acid Catalyzed Propargylation of 1,3-Dicarbonyl Derivatives. Synthesis of Tetrasubstituted Furans. Org. Lett. 2007; 9: 727-730. 10.1021/ol0631298. 17256951</bibtext> </blist> <blist> <bibtext> Ruengsangtongkul S., Chaisan N., Thongsornkleeb C., Tummatorn J., Ruchirawat S. Rate Enhancement in CAN-Promoted Pd(PPh3)2Cl2-Catalyzed Oxidative Cyclization: Synthesis of 2-Ketofuran-4-carboxylate Esters. Org. Lett. 2019; 21: 2514-2517. 10.1021/acs.orglett.9b00053. 30816716</bibtext> </blist> <blist> <bibtext> Li W., Wang J., Hu X., Shen K., Wang W., Chu Y., Lin L., Liu X., Feng X. Catalytic Asymmetric Roskamp Reaction of α-Alkyl-α-diazoesters with Aromatic Aldehydes: Highly Enantioselective Synthesis of α-Alkyl-β-keto Esters. J. Am. Chem. Soc. 2010; 132: 8532-8533. 10.1021/ja102832f</bibtext> </blist> <blist> <bibtext> Barabe F., Levesque P., Korobkov I., Barriault L. Synthesis of Fused Carbocycles via a Selective 6-Endo Dig Gold(I)-Catalyzed Carbocyclization. Org. Lett. 2011; 13: 5580-5583. 10.1021/ol202314q</bibtext> </blist> <blist> <bibtext> Katrun P., Songsichan T., Soorukram D., Pohmakotr M., Reutrakul V., Kuhakarn C. o-Iodoxybenzoic Acid (IBX)–Iodine Mediated One-Pot Deacylative Sulfonylation of 1,3-Dicarbonyl Compounds: A Synthesis of β-Carbonyl Sulfones. Synthesis. 2017; 49: 1109-1121</bibtext> </blist> </ref> <aug> <p>By Ida Ziccarelli; Lucia Veltri; Tommaso Prestia; Roberta Amuso; Maria A. Chiacchio; Raffaella Mancuso and Bartolo Gabriele</p> <p>Reported by Author; Author; Author; Author; Author; Author; Author</p> </aug> <nolink nlid="nl1" bibid="bib10" firstref="ref7"></nolink> <nolink nlid="nl2" bibid="bib11" firstref="ref8"></nolink> <nolink nlid="nl3" bibid="bib12" firstref="ref9"></nolink> <nolink nlid="nl4" bibid="bib14" firstref="ref11"></nolink> <nolink nlid="nl5" bibid="bib16" firstref="ref12"></nolink> <nolink nlid="nl6" bibid="bib18" firstref="ref13"></nolink> <nolink nlid="nl7" bibid="bib20" firstref="ref14"></nolink> <nolink nlid="nl8" bibid="bib22" firstref="ref15"></nolink> <nolink nlid="nl9" bibid="bib24" firstref="ref17"></nolink> <nolink nlid="nl10" bibid="bib26" firstref="ref18"></nolink> <nolink nlid="nl11" bibid="bib27" firstref="ref19"></nolink> <nolink nlid="nl12" bibid="bib29" firstref="ref21"></nolink> <nolink nlid="nl13" bibid="bib30" firstref="ref23"></nolink> <nolink nlid="nl14" bibid="bib32" firstref="ref25"></nolink> <nolink nlid="nl15" bibid="bib100" firstref="ref27"></nolink> <nolink nlid="nl16" bibid="bib71" firstref="ref28"></nolink> <nolink nlid="nl17" bibid="bib38" firstref="ref31"></nolink> <nolink nlid="nl18" bibid="bib49" firstref="ref35"></nolink> <nolink nlid="nl19" bibid="bib19" firstref="ref40"></nolink> <nolink nlid="nl20" bibid="bib53" firstref="ref41"></nolink> <nolink nlid="nl21" bibid="bib94" firstref="ref43"></nolink> <nolink nlid="nl22" bibid="bib33" firstref="ref45"></nolink> <nolink nlid="nl23" bibid="bib76" firstref="ref47"></nolink> <nolink nlid="nl24" bibid="bib47" firstref="ref50"></nolink> <nolink nlid="nl25" bibid="bib50" firstref="ref53"></nolink> <nolink nlid="nl26" bibid="bib40" firstref="ref57"></nolink> <nolink nlid="nl27" bibid="bib21" firstref="ref60"></nolink> <nolink nlid="nl28" bibid="bib67" firstref="ref63"></nolink> <nolink nlid="nl29" bibid="bib77" firstref="ref67"></nolink> <nolink nlid="nl30" bibid="bib31" firstref="ref68"></nolink> <nolink nlid="nl31" bibid="bib42" firstref="ref70"></nolink> <nolink nlid="nl32" bibid="bib55" firstref="ref73"></nolink> <nolink nlid="nl33" bibid="bib98" firstref="ref78"></nolink> <nolink nlid="nl34" bibid="bib13" firstref="ref79"></nolink> <nolink nlid="nl35" bibid="bib61" firstref="ref80"></nolink> <nolink nlid="nl36" bibid="bib23" firstref="ref86"></nolink> <nolink nlid="nl37" bibid="bib99" firstref="ref91"></nolink> <nolink nlid="nl38" bibid="bib37" firstref="ref95"></nolink> <nolink nlid="nl39" bibid="bib35" firstref="ref105"></nolink> <nolink nlid="nl40" bibid="bib56" firstref="ref111"></nolink> <nolink nlid="nl41" bibid="bib39" firstref="ref117"></nolink> <nolink nlid="nl42" bibid="bib68" firstref="ref118"></nolink> <nolink nlid="nl43" bibid="bib41" firstref="ref124"></nolink>
CustomLinks:
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=14203049&ISBN=&volume=28&issue=19&date=20230901&spage=6764&pages=6764-6764&title=Molecules&atitle=Palladium%20Iodide%20Catalyzed%20Multicomponent%20Carbonylative%20Synthesis%20of%202-%284-Acylfuran-2-yl%29acetamides&aulast=Ida%20Ziccarelli&id=DOI:10.3390/molecules28196764
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/28d55e40732649f6b77a1671eb3fdfb6
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.28d55e40732649f6b77a1671eb3fdfb6
RelevancyScore: 950
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 950.256042480469
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Palladium Iodide Catalyzed Multicomponent Carbonylative Synthesis of 2-(4-Acylfuran-2-yl)acetamides
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Ida+Ziccarelli%22">Ida Ziccarelli</searchLink><br /><searchLink fieldCode="AR" term="%22Lucia+Veltri%22">Lucia Veltri</searchLink><br /><searchLink fieldCode="AR" term="%22Tommaso+Prestia%22">Tommaso Prestia</searchLink><br /><searchLink fieldCode="AR" term="%22Roberta+Amuso%22">Roberta Amuso</searchLink><br /><searchLink fieldCode="AR" term="%22Maria+A%2E+Chiacchio%22">Maria A. Chiacchio</searchLink><br /><searchLink fieldCode="AR" term="%22Raffaella+Mancuso%22">Raffaella Mancuso</searchLink><br /><searchLink fieldCode="AR" term="%22Bartolo+Gabriele%22">Bartolo Gabriele</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Molecules, Vol 28, Iss 19, p 6764 (2023)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: MDPI AG, 2023.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2023
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Organic chemistry
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22alkynes%22">alkynes</searchLink><br /><searchLink fieldCode="DE" term="%22amides%22">amides</searchLink><br /><searchLink fieldCode="DE" term="%22aminocarbonylation%22">aminocarbonylation</searchLink><br /><searchLink fieldCode="DE" term="%22carbonylation%22">carbonylation</searchLink><br /><searchLink fieldCode="DE" term="%22C–H+activation%22">C–H activation</searchLink><br /><searchLink fieldCode="DE" term="%22conjugate+addition%22">conjugate addition</searchLink><br /><searchLink fieldCode="DE" term="%22Organic+chemistry%22">Organic chemistry</searchLink><br /><searchLink fieldCode="DE" term="%22QD241-441%22">QD241-441</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: 2-Propargyl-1,3-dicarbonyl compounds have been carbonylated under oxidative conditions and with the catalysis of the PdI2/KI catalytic system to selectively afford previously unreported 2-(4-acylfuran-2-yl)acetamides in fair to good yields (54–81%) over 19 examples. The process takes place under relatively mild conditions and occurs via a mechanistic pathway involving Csp-H activation by oxidative monoamincarbonylation of the terminal triple bond of the substrates with formation of 2-ynamide intermediates, followed by 5-exo-dig O-cyclization (via intramolecular conjugate addition of the in situ formed enolate to the 2-ynamide moiety) and aromative isomerization.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 1420-3049<br />40732649
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://www.mdpi.com/1420-3049/28/19/6764; https://doaj.org/toc/1420-3049
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.3390/molecules28196764
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/28d55e40732649f6b77a1671eb3fdfb6" linkWindow="_blank">https://doaj.org/article/28d55e40732649f6b77a1671eb3fdfb6</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.28d55e40732649f6b77a1671eb3fdfb6
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.28d55e40732649f6b77a1671eb3fdfb6
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.3390/molecules28196764
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 1
        StartPage: 6764
    Subjects:
      – SubjectFull: alkynes
        Type: general
      – SubjectFull: amides
        Type: general
      – SubjectFull: aminocarbonylation
        Type: general
      – SubjectFull: carbonylation
        Type: general
      – SubjectFull: C–H activation
        Type: general
      – SubjectFull: conjugate addition
        Type: general
      – SubjectFull: Organic chemistry
        Type: general
      – SubjectFull: QD241-441
        Type: general
    Titles:
      – TitleFull: Palladium Iodide Catalyzed Multicomponent Carbonylative Synthesis of 2-(4-Acylfuran-2-yl)acetamides
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Ida Ziccarelli
      – PersonEntity:
          Name:
            NameFull: Lucia Veltri
      – PersonEntity:
          Name:
            NameFull: Tommaso Prestia
      – PersonEntity:
          Name:
            NameFull: Roberta Amuso
      – PersonEntity:
          Name:
            NameFull: Maria A. Chiacchio
      – PersonEntity:
          Name:
            NameFull: Raffaella Mancuso
      – PersonEntity:
          Name:
            NameFull: Bartolo Gabriele
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 09
              Type: published
              Y: 2023
          Identifiers:
            – Type: issn-print
              Value: 14203049
            – Type: issn-print
              Value: 40732649
          Numbering:
            – Type: volume
              Value: 28
            – Type: issue
              Value: 19
          Titles:
            – TitleFull: Molecules
              Type: main
ResultId 1