Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy
Title: | Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy |
---|---|
Authors: | Luca Mastrantoni, Giovanna Garufi, Giulia Giordano, Noemi Maliziola, Elena Di Monte, Giorgia Arcuri, Valentina Frescura, Angelachiara Rotondi, Armando Orlandi, Luisa Carbognin, Antonella Palazzo, Federica Miglietta, Letizia Pontolillo, Alessandra Fabi, Lorenzo Gerratana, Sergio Pannunzio, Ida Paris, Sara Pilotto, Fabio Marazzi, Antonio Franco, Gianluca Franceschini, Maria Vittoria Dieci, Roberta Mazzeo, Fabio Puglisi, Valentina Guarneri, Michele Milella, Giovanni Scambia, Diana Giannarelli, Giampaolo Tortora, Emilio Bria |
Source: | npj Breast Cancer, Vol 11, Iss 1, Pp 1-13 (2025) |
Publisher Information: | Nature Portfolio, 2025. |
Publication Year: | 2025 |
Collection: | LCC:Neoplasms. Tumors. Oncology. Including cancer and carcinogens |
Subject Terms: | Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282 |
More Details: | Abstract Hormone receptor-positive/HER2-negative breast cancer (BC) is the most common subtype of BC and typically occurs as an early, operable disease. In patients receiving neoadjuvant chemotherapy (NACT), pathological complete response (pCR) is rare and multiple efforts have been made to predict disease recurrence. We developed a framework to predict pCR using clinicopathological characteristics widely available at diagnosis. The machine learning (ML) models were trained to predict pCR (n = 463), evaluated in an internal validation cohort (n = 109) and validated in an external validation cohort (n = 151). The best model was an Elastic Net, which achieved an area under the curve (AUC) of respectively 0.86 and 0.81. Our results highlight how simpler models using few input variables can be as valuable as more complex ML architectures. Our model is freely available and can be used to enhance the stratification of BC patients receiving NACT, providing a framework for the development of risk-adapted clinical trials. |
Document Type: | article |
File Description: | electronic resource |
Language: | English |
ISSN: | 2374-4677 |
Relation: | https://doaj.org/toc/2374-4677 |
DOI: | 10.1038/s41523-025-00727-w |
Access URL: | https://doaj.org/article/071d2ee3b6c24d3ca0260f479dba6d52 |
Accession Number: | edsdoj.071d2ee3b6c24d3ca0260f479dba6d52 |
Database: | Directory of Open Access Journals |
FullText | Links: – Type: other Url: https://resolver.ebsco.com:443/public/rma-ftfapi/ejs/direct?AccessToken=4BFD8A1214C7498F486E&Show=Object Text: Availability: 0 CustomLinks: – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=23744677&ISBN=&volume=11&issue=1&date=20250201&spage=1&pages=1-13&title=npj Breast Cancer&atitle=Accessible%20model%20predicts%20response%20in%20hormone%20receptor%20positive%20HER2%20negative%20breast%20cancer%20receiving%20neoadjuvant%20chemotherapy&aulast=Luca%20Mastrantoni&id=DOI:10.1038/s41523-025-00727-w Name: Full Text Finder (for New FTF UI) (s8985755) Category: fullText Text: Find It @ SCU Libraries MouseOverText: Find It @ SCU Libraries – Url: https://doaj.org/article/071d2ee3b6c24d3ca0260f479dba6d52 Name: EDS - DOAJ (s8985755) Category: fullText Text: View record from DOAJ MouseOverText: View record from DOAJ |
---|---|
Header | DbId: edsdoj DbLabel: Directory of Open Access Journals An: edsdoj.071d2ee3b6c24d3ca0260f479dba6d52 RelevancyScore: 1082 AccessLevel: 3 PubType: Academic Journal PubTypeId: academicJournal PreciseRelevancyScore: 1081.56311035156 |
IllustrationInfo | |
Items | – Name: Title Label: Title Group: Ti Data: Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy – Name: Author Label: Authors Group: Au Data: <searchLink fieldCode="AR" term="%22Luca+Mastrantoni%22">Luca Mastrantoni</searchLink><br /><searchLink fieldCode="AR" term="%22Giovanna+Garufi%22">Giovanna Garufi</searchLink><br /><searchLink fieldCode="AR" term="%22Giulia+Giordano%22">Giulia Giordano</searchLink><br /><searchLink fieldCode="AR" term="%22Noemi+Maliziola%22">Noemi Maliziola</searchLink><br /><searchLink fieldCode="AR" term="%22Elena+Di+Monte%22">Elena Di Monte</searchLink><br /><searchLink fieldCode="AR" term="%22Giorgia+Arcuri%22">Giorgia Arcuri</searchLink><br /><searchLink fieldCode="AR" term="%22Valentina+Frescura%22">Valentina Frescura</searchLink><br /><searchLink fieldCode="AR" term="%22Angelachiara+Rotondi%22">Angelachiara Rotondi</searchLink><br /><searchLink fieldCode="AR" term="%22Armando+Orlandi%22">Armando Orlandi</searchLink><br /><searchLink fieldCode="AR" term="%22Luisa+Carbognin%22">Luisa Carbognin</searchLink><br /><searchLink fieldCode="AR" term="%22Antonella+Palazzo%22">Antonella Palazzo</searchLink><br /><searchLink fieldCode="AR" term="%22Federica+Miglietta%22">Federica Miglietta</searchLink><br /><searchLink fieldCode="AR" term="%22Letizia+Pontolillo%22">Letizia Pontolillo</searchLink><br /><searchLink fieldCode="AR" term="%22Alessandra+Fabi%22">Alessandra Fabi</searchLink><br /><searchLink fieldCode="AR" term="%22Lorenzo+Gerratana%22">Lorenzo Gerratana</searchLink><br /><searchLink fieldCode="AR" term="%22Sergio+Pannunzio%22">Sergio Pannunzio</searchLink><br /><searchLink fieldCode="AR" term="%22Ida+Paris%22">Ida Paris</searchLink><br /><searchLink fieldCode="AR" term="%22Sara+Pilotto%22">Sara Pilotto</searchLink><br /><searchLink fieldCode="AR" term="%22Fabio+Marazzi%22">Fabio Marazzi</searchLink><br /><searchLink fieldCode="AR" term="%22Antonio+Franco%22">Antonio Franco</searchLink><br /><searchLink fieldCode="AR" term="%22Gianluca+Franceschini%22">Gianluca Franceschini</searchLink><br /><searchLink fieldCode="AR" term="%22Maria+Vittoria+Dieci%22">Maria Vittoria Dieci</searchLink><br /><searchLink fieldCode="AR" term="%22Roberta+Mazzeo%22">Roberta Mazzeo</searchLink><br /><searchLink fieldCode="AR" term="%22Fabio+Puglisi%22">Fabio Puglisi</searchLink><br /><searchLink fieldCode="AR" term="%22Valentina+Guarneri%22">Valentina Guarneri</searchLink><br /><searchLink fieldCode="AR" term="%22Michele+Milella%22">Michele Milella</searchLink><br /><searchLink fieldCode="AR" term="%22Giovanni+Scambia%22">Giovanni Scambia</searchLink><br /><searchLink fieldCode="AR" term="%22Diana+Giannarelli%22">Diana Giannarelli</searchLink><br /><searchLink fieldCode="AR" term="%22Giampaolo+Tortora%22">Giampaolo Tortora</searchLink><br /><searchLink fieldCode="AR" term="%22Emilio+Bria%22">Emilio Bria</searchLink> – Name: TitleSource Label: Source Group: Src Data: npj Breast Cancer, Vol 11, Iss 1, Pp 1-13 (2025) – Name: Publisher Label: Publisher Information Group: PubInfo Data: Nature Portfolio, 2025. – Name: DatePubCY Label: Publication Year Group: Date Data: 2025 – Name: Subset Label: Collection Group: HoldingsInfo Data: LCC:Neoplasms. Tumors. Oncology. Including cancer and carcinogens – Name: Subject Label: Subject Terms Group: Su Data: <searchLink fieldCode="DE" term="%22Neoplasms%2E+Tumors%2E+Oncology%2E+Including+cancer+and+carcinogens%22">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</searchLink><br /><searchLink fieldCode="DE" term="%22RC254-282%22">RC254-282</searchLink> – Name: Abstract Label: Description Group: Ab Data: Abstract Hormone receptor-positive/HER2-negative breast cancer (BC) is the most common subtype of BC and typically occurs as an early, operable disease. In patients receiving neoadjuvant chemotherapy (NACT), pathological complete response (pCR) is rare and multiple efforts have been made to predict disease recurrence. We developed a framework to predict pCR using clinicopathological characteristics widely available at diagnosis. The machine learning (ML) models were trained to predict pCR (n = 463), evaluated in an internal validation cohort (n = 109) and validated in an external validation cohort (n = 151). The best model was an Elastic Net, which achieved an area under the curve (AUC) of respectively 0.86 and 0.81. Our results highlight how simpler models using few input variables can be as valuable as more complex ML architectures. Our model is freely available and can be used to enhance the stratification of BC patients receiving NACT, providing a framework for the development of risk-adapted clinical trials. – Name: TypeDocument Label: Document Type Group: TypDoc Data: article – Name: Format Label: File Description Group: SrcInfo Data: electronic resource – Name: Language Label: Language Group: Lang Data: English – Name: ISSN Label: ISSN Group: ISSN Data: 2374-4677 – Name: NoteTitleSource Label: Relation Group: SrcInfo Data: https://doaj.org/toc/2374-4677 – Name: DOI Label: DOI Group: ID Data: 10.1038/s41523-025-00727-w – Name: URL Label: Access URL Group: URL Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/071d2ee3b6c24d3ca0260f479dba6d52" linkWindow="_blank">https://doaj.org/article/071d2ee3b6c24d3ca0260f479dba6d52</link> – Name: AN Label: Accession Number Group: ID Data: edsdoj.071d2ee3b6c24d3ca0260f479dba6d52 |
PLink | https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.071d2ee3b6c24d3ca0260f479dba6d52 |
RecordInfo | BibRecord: BibEntity: Identifiers: – Type: doi Value: 10.1038/s41523-025-00727-w Languages: – Text: English PhysicalDescription: Pagination: PageCount: 13 StartPage: 1 Subjects: – SubjectFull: Neoplasms. Tumors. Oncology. Including cancer and carcinogens Type: general – SubjectFull: RC254-282 Type: general Titles: – TitleFull: Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy Type: main BibRelationships: HasContributorRelationships: – PersonEntity: Name: NameFull: Luca Mastrantoni – PersonEntity: Name: NameFull: Giovanna Garufi – PersonEntity: Name: NameFull: Giulia Giordano – PersonEntity: Name: NameFull: Noemi Maliziola – PersonEntity: Name: NameFull: Elena Di Monte – PersonEntity: Name: NameFull: Giorgia Arcuri – PersonEntity: Name: NameFull: Valentina Frescura – PersonEntity: Name: NameFull: Angelachiara Rotondi – PersonEntity: Name: NameFull: Armando Orlandi – PersonEntity: Name: NameFull: Luisa Carbognin – PersonEntity: Name: NameFull: Antonella Palazzo – PersonEntity: Name: NameFull: Federica Miglietta – PersonEntity: Name: NameFull: Letizia Pontolillo – PersonEntity: Name: NameFull: Alessandra Fabi – PersonEntity: Name: NameFull: Lorenzo Gerratana – PersonEntity: Name: NameFull: Sergio Pannunzio – PersonEntity: Name: NameFull: Ida Paris – PersonEntity: Name: NameFull: Sara Pilotto – PersonEntity: Name: NameFull: Fabio Marazzi – PersonEntity: Name: NameFull: Antonio Franco – PersonEntity: Name: NameFull: Gianluca Franceschini – PersonEntity: Name: NameFull: Maria Vittoria Dieci – PersonEntity: Name: NameFull: Roberta Mazzeo – PersonEntity: Name: NameFull: Fabio Puglisi – PersonEntity: Name: NameFull: Valentina Guarneri – PersonEntity: Name: NameFull: Michele Milella – PersonEntity: Name: NameFull: Giovanni Scambia – PersonEntity: Name: NameFull: Diana Giannarelli – PersonEntity: Name: NameFull: Giampaolo Tortora – PersonEntity: Name: NameFull: Emilio Bria IsPartOfRelationships: – BibEntity: Dates: – D: 01 M: 02 Type: published Y: 2025 Identifiers: – Type: issn-print Value: 23744677 Numbering: – Type: volume Value: 11 – Type: issue Value: 1 Titles: – TitleFull: npj Breast Cancer Type: main |
ResultId | 1 |