Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy

Bibliographic Details
Title: Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy
Authors: Luca Mastrantoni, Giovanna Garufi, Giulia Giordano, Noemi Maliziola, Elena Di Monte, Giorgia Arcuri, Valentina Frescura, Angelachiara Rotondi, Armando Orlandi, Luisa Carbognin, Antonella Palazzo, Federica Miglietta, Letizia Pontolillo, Alessandra Fabi, Lorenzo Gerratana, Sergio Pannunzio, Ida Paris, Sara Pilotto, Fabio Marazzi, Antonio Franco, Gianluca Franceschini, Maria Vittoria Dieci, Roberta Mazzeo, Fabio Puglisi, Valentina Guarneri, Michele Milella, Giovanni Scambia, Diana Giannarelli, Giampaolo Tortora, Emilio Bria
Source: npj Breast Cancer, Vol 11, Iss 1, Pp 1-13 (2025)
Publisher Information: Nature Portfolio, 2025.
Publication Year: 2025
Collection: LCC:Neoplasms. Tumors. Oncology. Including cancer and carcinogens
Subject Terms: Neoplasms. Tumors. Oncology. Including cancer and carcinogens, RC254-282
More Details: Abstract Hormone receptor-positive/HER2-negative breast cancer (BC) is the most common subtype of BC and typically occurs as an early, operable disease. In patients receiving neoadjuvant chemotherapy (NACT), pathological complete response (pCR) is rare and multiple efforts have been made to predict disease recurrence. We developed a framework to predict pCR using clinicopathological characteristics widely available at diagnosis. The machine learning (ML) models were trained to predict pCR (n = 463), evaluated in an internal validation cohort (n = 109) and validated in an external validation cohort (n = 151). The best model was an Elastic Net, which achieved an area under the curve (AUC) of respectively 0.86 and 0.81. Our results highlight how simpler models using few input variables can be as valuable as more complex ML architectures. Our model is freely available and can be used to enhance the stratification of BC patients receiving NACT, providing a framework for the development of risk-adapted clinical trials.
Document Type: article
File Description: electronic resource
Language: English
ISSN: 2374-4677
Relation: https://doaj.org/toc/2374-4677
DOI: 10.1038/s41523-025-00727-w
Access URL: https://doaj.org/article/071d2ee3b6c24d3ca0260f479dba6d52
Accession Number: edsdoj.071d2ee3b6c24d3ca0260f479dba6d52
Database: Directory of Open Access Journals
FullText Links:
  – Type: other
    Url: https://resolver.ebsco.com:443/public/rma-ftfapi/ejs/direct?AccessToken=4BFD8A1214C7498F486E&Show=Object
Text:
  Availability: 0
CustomLinks:
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsdoj&genre=article&issn=23744677&ISBN=&volume=11&issue=1&date=20250201&spage=1&pages=1-13&title=npj Breast Cancer&atitle=Accessible%20model%20predicts%20response%20in%20hormone%20receptor%20positive%20HER2%20negative%20breast%20cancer%20receiving%20neoadjuvant%20chemotherapy&aulast=Luca%20Mastrantoni&id=DOI:10.1038/s41523-025-00727-w
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
  – Url: https://doaj.org/article/071d2ee3b6c24d3ca0260f479dba6d52
    Name: EDS - DOAJ (s8985755)
    Category: fullText
    Text: View record from DOAJ
    MouseOverText: View record from DOAJ
Header DbId: edsdoj
DbLabel: Directory of Open Access Journals
An: edsdoj.071d2ee3b6c24d3ca0260f479dba6d52
RelevancyScore: 1082
AccessLevel: 3
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 1081.56311035156
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Luca+Mastrantoni%22">Luca Mastrantoni</searchLink><br /><searchLink fieldCode="AR" term="%22Giovanna+Garufi%22">Giovanna Garufi</searchLink><br /><searchLink fieldCode="AR" term="%22Giulia+Giordano%22">Giulia Giordano</searchLink><br /><searchLink fieldCode="AR" term="%22Noemi+Maliziola%22">Noemi Maliziola</searchLink><br /><searchLink fieldCode="AR" term="%22Elena+Di+Monte%22">Elena Di Monte</searchLink><br /><searchLink fieldCode="AR" term="%22Giorgia+Arcuri%22">Giorgia Arcuri</searchLink><br /><searchLink fieldCode="AR" term="%22Valentina+Frescura%22">Valentina Frescura</searchLink><br /><searchLink fieldCode="AR" term="%22Angelachiara+Rotondi%22">Angelachiara Rotondi</searchLink><br /><searchLink fieldCode="AR" term="%22Armando+Orlandi%22">Armando Orlandi</searchLink><br /><searchLink fieldCode="AR" term="%22Luisa+Carbognin%22">Luisa Carbognin</searchLink><br /><searchLink fieldCode="AR" term="%22Antonella+Palazzo%22">Antonella Palazzo</searchLink><br /><searchLink fieldCode="AR" term="%22Federica+Miglietta%22">Federica Miglietta</searchLink><br /><searchLink fieldCode="AR" term="%22Letizia+Pontolillo%22">Letizia Pontolillo</searchLink><br /><searchLink fieldCode="AR" term="%22Alessandra+Fabi%22">Alessandra Fabi</searchLink><br /><searchLink fieldCode="AR" term="%22Lorenzo+Gerratana%22">Lorenzo Gerratana</searchLink><br /><searchLink fieldCode="AR" term="%22Sergio+Pannunzio%22">Sergio Pannunzio</searchLink><br /><searchLink fieldCode="AR" term="%22Ida+Paris%22">Ida Paris</searchLink><br /><searchLink fieldCode="AR" term="%22Sara+Pilotto%22">Sara Pilotto</searchLink><br /><searchLink fieldCode="AR" term="%22Fabio+Marazzi%22">Fabio Marazzi</searchLink><br /><searchLink fieldCode="AR" term="%22Antonio+Franco%22">Antonio Franco</searchLink><br /><searchLink fieldCode="AR" term="%22Gianluca+Franceschini%22">Gianluca Franceschini</searchLink><br /><searchLink fieldCode="AR" term="%22Maria+Vittoria+Dieci%22">Maria Vittoria Dieci</searchLink><br /><searchLink fieldCode="AR" term="%22Roberta+Mazzeo%22">Roberta Mazzeo</searchLink><br /><searchLink fieldCode="AR" term="%22Fabio+Puglisi%22">Fabio Puglisi</searchLink><br /><searchLink fieldCode="AR" term="%22Valentina+Guarneri%22">Valentina Guarneri</searchLink><br /><searchLink fieldCode="AR" term="%22Michele+Milella%22">Michele Milella</searchLink><br /><searchLink fieldCode="AR" term="%22Giovanni+Scambia%22">Giovanni Scambia</searchLink><br /><searchLink fieldCode="AR" term="%22Diana+Giannarelli%22">Diana Giannarelli</searchLink><br /><searchLink fieldCode="AR" term="%22Giampaolo+Tortora%22">Giampaolo Tortora</searchLink><br /><searchLink fieldCode="AR" term="%22Emilio+Bria%22">Emilio Bria</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: npj Breast Cancer, Vol 11, Iss 1, Pp 1-13 (2025)
– Name: Publisher
  Label: Publisher Information
  Group: PubInfo
  Data: Nature Portfolio, 2025.
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2025
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: LCC:Neoplasms. Tumors. Oncology. Including cancer and carcinogens
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Neoplasms%2E+Tumors%2E+Oncology%2E+Including+cancer+and+carcinogens%22">Neoplasms. Tumors. Oncology. Including cancer and carcinogens</searchLink><br /><searchLink fieldCode="DE" term="%22RC254-282%22">RC254-282</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Abstract Hormone receptor-positive/HER2-negative breast cancer (BC) is the most common subtype of BC and typically occurs as an early, operable disease. In patients receiving neoadjuvant chemotherapy (NACT), pathological complete response (pCR) is rare and multiple efforts have been made to predict disease recurrence. We developed a framework to predict pCR using clinicopathological characteristics widely available at diagnosis. The machine learning (ML) models were trained to predict pCR (n = 463), evaluated in an internal validation cohort (n = 109) and validated in an external validation cohort (n = 151). The best model was an Elastic Net, which achieved an area under the curve (AUC) of respectively 0.86 and 0.81. Our results highlight how simpler models using few input variables can be as valuable as more complex ML architectures. Our model is freely available and can be used to enhance the stratification of BC patients receiving NACT, providing a framework for the development of risk-adapted clinical trials.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: article
– Name: Format
  Label: File Description
  Group: SrcInfo
  Data: electronic resource
– Name: Language
  Label: Language
  Group: Lang
  Data: English
– Name: ISSN
  Label: ISSN
  Group: ISSN
  Data: 2374-4677
– Name: NoteTitleSource
  Label: Relation
  Group: SrcInfo
  Data: https://doaj.org/toc/2374-4677
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1038/s41523-025-00727-w
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="https://doaj.org/article/071d2ee3b6c24d3ca0260f479dba6d52" linkWindow="_blank">https://doaj.org/article/071d2ee3b6c24d3ca0260f479dba6d52</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsdoj.071d2ee3b6c24d3ca0260f479dba6d52
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsdoj&AN=edsdoj.071d2ee3b6c24d3ca0260f479dba6d52
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1038/s41523-025-00727-w
    Languages:
      – Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 13
        StartPage: 1
    Subjects:
      – SubjectFull: Neoplasms. Tumors. Oncology. Including cancer and carcinogens
        Type: general
      – SubjectFull: RC254-282
        Type: general
    Titles:
      – TitleFull: Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Luca Mastrantoni
      – PersonEntity:
          Name:
            NameFull: Giovanna Garufi
      – PersonEntity:
          Name:
            NameFull: Giulia Giordano
      – PersonEntity:
          Name:
            NameFull: Noemi Maliziola
      – PersonEntity:
          Name:
            NameFull: Elena Di Monte
      – PersonEntity:
          Name:
            NameFull: Giorgia Arcuri
      – PersonEntity:
          Name:
            NameFull: Valentina Frescura
      – PersonEntity:
          Name:
            NameFull: Angelachiara Rotondi
      – PersonEntity:
          Name:
            NameFull: Armando Orlandi
      – PersonEntity:
          Name:
            NameFull: Luisa Carbognin
      – PersonEntity:
          Name:
            NameFull: Antonella Palazzo
      – PersonEntity:
          Name:
            NameFull: Federica Miglietta
      – PersonEntity:
          Name:
            NameFull: Letizia Pontolillo
      – PersonEntity:
          Name:
            NameFull: Alessandra Fabi
      – PersonEntity:
          Name:
            NameFull: Lorenzo Gerratana
      – PersonEntity:
          Name:
            NameFull: Sergio Pannunzio
      – PersonEntity:
          Name:
            NameFull: Ida Paris
      – PersonEntity:
          Name:
            NameFull: Sara Pilotto
      – PersonEntity:
          Name:
            NameFull: Fabio Marazzi
      – PersonEntity:
          Name:
            NameFull: Antonio Franco
      – PersonEntity:
          Name:
            NameFull: Gianluca Franceschini
      – PersonEntity:
          Name:
            NameFull: Maria Vittoria Dieci
      – PersonEntity:
          Name:
            NameFull: Roberta Mazzeo
      – PersonEntity:
          Name:
            NameFull: Fabio Puglisi
      – PersonEntity:
          Name:
            NameFull: Valentina Guarneri
      – PersonEntity:
          Name:
            NameFull: Michele Milella
      – PersonEntity:
          Name:
            NameFull: Giovanni Scambia
      – PersonEntity:
          Name:
            NameFull: Diana Giannarelli
      – PersonEntity:
          Name:
            NameFull: Giampaolo Tortora
      – PersonEntity:
          Name:
            NameFull: Emilio Bria
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 02
              Type: published
              Y: 2025
          Identifiers:
            – Type: issn-print
              Value: 23744677
          Numbering:
            – Type: volume
              Value: 11
            – Type: issue
              Value: 1
          Titles:
            – TitleFull: npj Breast Cancer
              Type: main
ResultId 1