Characterizing High Schmidt Number Witnesses in Arbitrary Dimensions System

Bibliographic Details
Title: Characterizing High Schmidt Number Witnesses in Arbitrary Dimensions System
Authors: Xiong, Liang, Sze, Nung-sing
Publication Year: 2025
Collection: Computer Science
Mathematics
Mathematical Physics
Quantum Physics
Subject Terms: Quantum Physics, Mathematical Physics, Mathematics - Numerical Analysis, Mathematics - Spectral Theory
More Details: A profound comprehension of quantum entanglement is crucial for the progression of quantum technologies. The degree of entanglement can be assessed by enumerating the entangled degrees of freedom, leading to the determination of a parameter known as the Schmidt number. In this paper, we develop an efficient analytical tool for characterizing high Schmidt number witnesses for bipartite quantum states in arbitrary dimensions. Our methods not only offer viable mathematical methods for constructing high-dimensional Schmidt number witnesses in theory but also simplify the quantification of entanglement and dimensionality. Most notably, we develop high-dimensional Schmidt number witnesses within arbitrary-dimensional systems, with our Schmidt witness coefficients relying solely on the operator Schmidt coefficient. Subsequently, we demonstrate our theoretical advancements and computational superiority by constructing Schmidt number witnesses in arbitrary dimensional bipartite quantum systems with Schmidt numbers four and five.
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2504.11213
Accession Number: edsarx.2504.11213
Database: arXiv
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://arxiv.org/abs/2504.11213
    Name: EDS - Arxiv
    Category: fullText
    Text: View this record from Arxiv
    MouseOverText: View this record from Arxiv
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsarx&genre=article&issn=&ISBN=&volume=&issue=&date=20250415&spage=&pages=&title=Characterizing High Schmidt Number Witnesses in Arbitrary Dimensions System&atitle=Characterizing%20High%20Schmidt%20Number%20Witnesses%20in%20Arbitrary%20Dimensions%20System&aulast=Xiong%2C%20Liang&id=DOI:
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
Header DbId: edsarx
DbLabel: arXiv
An: edsarx.2504.11213
RelevancyScore: 1147
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 1146.59155273438
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Characterizing High Schmidt Number Witnesses in Arbitrary Dimensions System
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Xiong%2C+Liang%22">Xiong, Liang</searchLink><br /><searchLink fieldCode="AR" term="%22Sze%2C+Nung-sing%22">Sze, Nung-sing</searchLink>
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2025
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Computer Science<br />Mathematics<br />Mathematical Physics<br />Quantum Physics
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Quantum+Physics%22">Quantum Physics</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematical+Physics%22">Mathematical Physics</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics+-+Numerical+Analysis%22">Mathematics - Numerical Analysis</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics+-+Spectral+Theory%22">Mathematics - Spectral Theory</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: A profound comprehension of quantum entanglement is crucial for the progression of quantum technologies. The degree of entanglement can be assessed by enumerating the entangled degrees of freedom, leading to the determination of a parameter known as the Schmidt number. In this paper, we develop an efficient analytical tool for characterizing high Schmidt number witnesses for bipartite quantum states in arbitrary dimensions. Our methods not only offer viable mathematical methods for constructing high-dimensional Schmidt number witnesses in theory but also simplify the quantification of entanglement and dimensionality. Most notably, we develop high-dimensional Schmidt number witnesses within arbitrary-dimensional systems, with our Schmidt witness coefficients relying solely on the operator Schmidt coefficient. Subsequently, we demonstrate our theoretical advancements and computational superiority by constructing Schmidt number witnesses in arbitrary dimensional bipartite quantum systems with Schmidt numbers four and five.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Working Paper
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2504.11213" linkWindow="_blank">http://arxiv.org/abs/2504.11213</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsarx.2504.11213
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2504.11213
RecordInfo BibRecord:
  BibEntity:
    Subjects:
      – SubjectFull: Quantum Physics
        Type: general
      – SubjectFull: Mathematical Physics
        Type: general
      – SubjectFull: Mathematics - Numerical Analysis
        Type: general
      – SubjectFull: Mathematics - Spectral Theory
        Type: general
    Titles:
      – TitleFull: Characterizing High Schmidt Number Witnesses in Arbitrary Dimensions System
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Xiong, Liang
      – PersonEntity:
          Name:
            NameFull: Sze, Nung-sing
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 15
              M: 04
              Type: published
              Y: 2025
ResultId 1