Open and trapping channels in complex resonant media

Bibliographic Details
Title: Open and trapping channels in complex resonant media
Authors: Rescanieres, Romain, Pierrat, Romain, Goetschy, Arthur
Publication Year: 2024
Collection: Condensed Matter
Physics (Other)
Subject Terms: Physics - Optics, Condensed Matter - Disordered Systems and Neural Networks
More Details: We present a statistical study of the transmission and dwell-time matrices in disordered media composed of resonators, focusing on how frequency detuning influences their eigenvalue distributions. Our analysis reveals that the distribution of transmission eigenvalues undergoes a transition from a monomodal to a bimodal profile, and back to monomodal, as the frequency approaches the resonant frequency of the particles. Moreover, the distribution of dwell-time eigenvalues broadens significantly near resonance, with the longest lifetimes exceeding the median by several orders of magnitude. These results are explained by examining how frequency $\omega$ affects the transport mean free path of light, $\ell(\omega)$, and the energy transport velocity, $v_E(\omega)$, which in turn shape the observed distributions. We demonstrate the strong potential of wavefront shaping to enhance both transmission and energy storage in resonant disordered media. In the diffusive regime, where the system thickness $L$ exceeds the mean free path, both transmission and dwell time can be enhanced by a factor $\varpropto L/\ell(\omega) \gg 1$ when using wavefronts associated with the largest eigenvalues instead of plane waves. In the localized regime, the enhancements become $\varpropto Ne^{2L/\xi}$ for transmission and $\varpropto N\xi /L$ for dwell time, where $\xi$ is the localization length and $N$ is the number of controlled scattering channels. Finally, we show that employing high-$Q$ resonators instead of low-$Q$ ones increases energy storage within the medium by a factor of $\varpropto Q/k\ell(\omega)$, in both the diffusive and localized regimes.
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2411.19818
Accession Number: edsarx.2411.19818
Database: arXiv
More Details
Description not available.