Learning Quantized Adaptive Conditions for Diffusion Models

Bibliographic Details
Title: Learning Quantized Adaptive Conditions for Diffusion Models
Authors: Liang, Yuchen, Tian, Yuchuan, Yu, Lei, Tang, Huao, Hu, Jie, Fang, Xiangzhong, Chen, Hanting
Publication Year: 2024
Collection: Computer Science
Subject Terms: Computer Science - Computer Vision and Pattern Recognition
More Details: The curvature of ODE trajectories in diffusion models hinders their ability to generate high-quality images in a few number of function evaluations (NFE). In this paper, we propose a novel and effective approach to reduce trajectory curvature by utilizing adaptive conditions. By employing a extremely light-weight quantized encoder, our method incurs only an additional 1% of training parameters, eliminates the need for extra regularization terms, yet achieves significantly better sample quality. Our approach accelerates ODE sampling while preserving the downstream task image editing capabilities of SDE techniques. Extensive experiments verify that our method can generate high quality results under extremely limited sampling costs. With only 6 NFE, we achieve 5.14 FID on CIFAR-10, 6.91 FID on FFHQ 64x64 and 3.10 FID on AFHQv2.
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2409.17487
Accession Number: edsarx.2409.17487
Database: arXiv
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://arxiv.org/abs/2409.17487
    Name: EDS - Arxiv
    Category: fullText
    Text: View this record from Arxiv
    MouseOverText: View this record from Arxiv
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsarx&genre=article&issn=&ISBN=&volume=&issue=&date=20240925&spage=&pages=&title=Learning Quantized Adaptive Conditions for Diffusion Models&atitle=Learning%20Quantized%20Adaptive%20Conditions%20for%20Diffusion%20Models&aulast=Liang%2C%20Yuchen&id=DOI:
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
Header DbId: edsarx
DbLabel: arXiv
An: edsarx.2409.17487
RelevancyScore: 1112
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 1112.25854492188
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Learning Quantized Adaptive Conditions for Diffusion Models
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Liang%2C+Yuchen%22">Liang, Yuchen</searchLink><br /><searchLink fieldCode="AR" term="%22Tian%2C+Yuchuan%22">Tian, Yuchuan</searchLink><br /><searchLink fieldCode="AR" term="%22Yu%2C+Lei%22">Yu, Lei</searchLink><br /><searchLink fieldCode="AR" term="%22Tang%2C+Huao%22">Tang, Huao</searchLink><br /><searchLink fieldCode="AR" term="%22Hu%2C+Jie%22">Hu, Jie</searchLink><br /><searchLink fieldCode="AR" term="%22Fang%2C+Xiangzhong%22">Fang, Xiangzhong</searchLink><br /><searchLink fieldCode="AR" term="%22Chen%2C+Hanting%22">Chen, Hanting</searchLink>
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Computer Science
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Computer+Science+-+Computer+Vision+and+Pattern+Recognition%22">Computer Science - Computer Vision and Pattern Recognition</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: The curvature of ODE trajectories in diffusion models hinders their ability to generate high-quality images in a few number of function evaluations (NFE). In this paper, we propose a novel and effective approach to reduce trajectory curvature by utilizing adaptive conditions. By employing a extremely light-weight quantized encoder, our method incurs only an additional 1% of training parameters, eliminates the need for extra regularization terms, yet achieves significantly better sample quality. Our approach accelerates ODE sampling while preserving the downstream task image editing capabilities of SDE techniques. Extensive experiments verify that our method can generate high quality results under extremely limited sampling costs. With only 6 NFE, we achieve 5.14 FID on CIFAR-10, 6.91 FID on FFHQ 64x64 and 3.10 FID on AFHQv2.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Working Paper
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2409.17487" linkWindow="_blank">http://arxiv.org/abs/2409.17487</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsarx.2409.17487
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2409.17487
RecordInfo BibRecord:
  BibEntity:
    Subjects:
      – SubjectFull: Computer Science - Computer Vision and Pattern Recognition
        Type: general
    Titles:
      – TitleFull: Learning Quantized Adaptive Conditions for Diffusion Models
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Liang, Yuchen
      – PersonEntity:
          Name:
            NameFull: Tian, Yuchuan
      – PersonEntity:
          Name:
            NameFull: Yu, Lei
      – PersonEntity:
          Name:
            NameFull: Tang, Huao
      – PersonEntity:
          Name:
            NameFull: Hu, Jie
      – PersonEntity:
          Name:
            NameFull: Fang, Xiangzhong
      – PersonEntity:
          Name:
            NameFull: Chen, Hanting
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 25
              M: 09
              Type: published
              Y: 2024
ResultId 1