Infinite families of triangle presentations

Bibliographic Details
Title: Infinite families of triangle presentations
Authors: Loué, Alex
Publication Year: 2024
Collection: Mathematics
Subject Terms: Mathematics - Group Theory, Mathematics - Combinatorics, 20F65 (Primary) 51E24, 11F06 (Secondary)
More Details: A triangle presentation is a combinatorial datum that encodes the action of a group on a $2$-dimensional triangle complex with prescribed links, which is simply transitive on the vertices. We provide the first infinite family of triangle presentations that give rise to lattices in exotic buildings of type $\widetilde{\text{A}_2}$ of arbitrarily large order. Our method also gives rise to infinite families of triangle presentations for other link types, such as opposition complexes in Desarguesian projective planes.
Comment: 23 pages, 6 figures, 5 tables
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2408.15763
Accession Number: edsarx.2408.15763
Database: arXiv
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://arxiv.org/abs/2408.15763
    Name: EDS - Arxiv
    Category: fullText
    Text: View this record from Arxiv
    MouseOverText: View this record from Arxiv
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsarx&genre=article&issn=&ISBN=&volume=&issue=&date=20240828&spage=&pages=&title=Infinite families of triangle presentations&atitle=Infinite%20families%20of%20triangle%20presentations&aulast=Lou%C3%A9%2C%20Alex&id=DOI:
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
Header DbId: edsarx
DbLabel: arXiv
An: edsarx.2408.15763
RelevancyScore: 1112
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 1112.24560546875
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Infinite families of triangle presentations
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Loué%2C+Alex%22">Loué, Alex</searchLink>
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Mathematics
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Mathematics+-+Group+Theory%22">Mathematics - Group Theory</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics+-+Combinatorics%22">Mathematics - Combinatorics</searchLink><br /><searchLink fieldCode="DE" term="%2220F65+%28Primary%29+51E24%2C+11F06+%28Secondary%29%22">20F65 (Primary) 51E24, 11F06 (Secondary)</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: A triangle presentation is a combinatorial datum that encodes the action of a group on a $2$-dimensional triangle complex with prescribed links, which is simply transitive on the vertices. We provide the first infinite family of triangle presentations that give rise to lattices in exotic buildings of type $\widetilde{\text{A}_2}$ of arbitrarily large order. Our method also gives rise to infinite families of triangle presentations for other link types, such as opposition complexes in Desarguesian projective planes.<br />Comment: 23 pages, 6 figures, 5 tables
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Working Paper
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2408.15763" linkWindow="_blank">http://arxiv.org/abs/2408.15763</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsarx.2408.15763
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2408.15763
RecordInfo BibRecord:
  BibEntity:
    Subjects:
      – SubjectFull: Mathematics - Group Theory
        Type: general
      – SubjectFull: Mathematics - Combinatorics
        Type: general
      – SubjectFull: 20F65 (Primary) 51E24, 11F06 (Secondary)
        Type: general
    Titles:
      – TitleFull: Infinite families of triangle presentations
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Loué, Alex
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 28
              M: 08
              Type: published
              Y: 2024
ResultId 1