A simple lower bound for the complexity of estimating partition functions on a quantum computer

Bibliographic Details
Title: A simple lower bound for the complexity of estimating partition functions on a quantum computer
Authors: Chen, Zherui, Nannicini, Giacomo
Publication Year: 2024
Collection: Computer Science
Mathematics
Quantum Physics
Statistics
Subject Terms: Quantum Physics, Computer Science - Computational Complexity, Computer Science - Data Structures and Algorithms, Mathematics - Statistics Theory
More Details: We study the complexity of estimating the partition function $\mathsf{Z}(\beta)=\sum_{x\in\chi} e^{-\beta H(x)}$ for a Gibbs distribution characterized by the Hamiltonian $H(x)$. We provide a simple and natural lower bound for quantum algorithms that solve this task by relying on reflections through the coherent encoding of Gibbs states. Our primary contribution is a $\varOmega(1/\epsilon)$ lower bound for the number of reflections needed to estimate the partition function with a quantum algorithm. The proof is based on a reduction from the problem of estimating the Hamming weight of an unknown binary string.
Comment: 11 pages, we added a reference [HK20] to a recent classical lower bound in the sampling model
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2404.02414
Accession Number: edsarx.2404.02414
Database: arXiv
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://arxiv.org/abs/2404.02414
    Name: EDS - Arxiv
    Category: fullText
    Text: View this record from Arxiv
    MouseOverText: View this record from Arxiv
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsarx&genre=article&issn=&ISBN=&volume=&issue=&date=20240402&spage=&pages=&title=A simple lower bound for the complexity of estimating partition functions on a quantum computer&atitle=A%20simple%20lower%20bound%20for%20the%20complexity%20of%20estimating%20partition%20functions%20on%20a%20quantum%20computer&aulast=Chen%2C%20Zherui&id=DOI:
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
Header DbId: edsarx
DbLabel: arXiv
An: edsarx.2404.02414
RelevancyScore: 1085
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 1085.41735839844
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: A simple lower bound for the complexity of estimating partition functions on a quantum computer
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Chen%2C+Zherui%22">Chen, Zherui</searchLink><br /><searchLink fieldCode="AR" term="%22Nannicini%2C+Giacomo%22">Nannicini, Giacomo</searchLink>
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2024
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Computer Science<br />Mathematics<br />Quantum Physics<br />Statistics
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Quantum+Physics%22">Quantum Physics</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+Science+-+Computational+Complexity%22">Computer Science - Computational Complexity</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+Science+-+Data+Structures+and+Algorithms%22">Computer Science - Data Structures and Algorithms</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics+-+Statistics+Theory%22">Mathematics - Statistics Theory</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: We study the complexity of estimating the partition function $\mathsf{Z}(\beta)=\sum_{x\in\chi} e^{-\beta H(x)}$ for a Gibbs distribution characterized by the Hamiltonian $H(x)$. We provide a simple and natural lower bound for quantum algorithms that solve this task by relying on reflections through the coherent encoding of Gibbs states. Our primary contribution is a $\varOmega(1/\epsilon)$ lower bound for the number of reflections needed to estimate the partition function with a quantum algorithm. The proof is based on a reduction from the problem of estimating the Hamming weight of an unknown binary string.<br />Comment: 11 pages, we added a reference [HK20] to a recent classical lower bound in the sampling model
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Working Paper
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2404.02414" linkWindow="_blank">http://arxiv.org/abs/2404.02414</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsarx.2404.02414
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2404.02414
RecordInfo BibRecord:
  BibEntity:
    Subjects:
      – SubjectFull: Quantum Physics
        Type: general
      – SubjectFull: Computer Science - Computational Complexity
        Type: general
      – SubjectFull: Computer Science - Data Structures and Algorithms
        Type: general
      – SubjectFull: Mathematics - Statistics Theory
        Type: general
    Titles:
      – TitleFull: A simple lower bound for the complexity of estimating partition functions on a quantum computer
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Chen, Zherui
      – PersonEntity:
          Name:
            NameFull: Nannicini, Giacomo
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 02
              M: 04
              Type: published
              Y: 2024
ResultId 1