More Details: |
The main purpose of this article is the study of an inverse problem for nonlocal porous medium equations (NPMEs) with a linear absorption term. More concretely, we show that under certain assumptions on the time-independent coefficients $\rho,q$ and the time-independent kernel $K$ of the nonlocal operator $L_K$, the (partial) Dirichlet-to-Neumann map uniquely determines the three quantities $(\rho,K,q)$ in the nonlocal porous medium equation $\rho \partial_tu+L_K(u^m)+qu=0$, where $m>1$. In the first part of this work we adapt the Galerkin method to prove existence and uniqueness of nonnegative, bounded solutions to the homogenoeus NPME with regular initial and exterior conditions. Additionally, a comparison principle for solutions of the NPME is proved, whenever they can be approximated by sufficiently regular functions like the one constructed for the homogeneous NPME. These results are then used in the second part to prove the unique determination of the coefficients $(\rho,K,q)$ in the inverse problem. Finally, we show that the assumptions on the nonlocal operator $L_K$ in our main theorem are satisfied by the fractional conductivity operator $\mathcal{L}_{\gamma}$, whose kernel is $\gamma^{1/2}(x)\gamma^{1/2}(y)/|x-y|^{n+2s}$ up to a normalization constant. Comment: 57 pages |