Improving Convergence and Generalization Using Parameter Symmetries

Bibliographic Details
Title: Improving Convergence and Generalization Using Parameter Symmetries
Authors: Zhao, Bo, Gower, Robert M., Walters, Robin, Yu, Rose
Publication Year: 2023
Collection: Computer Science
Mathematics
Subject Terms: Computer Science - Machine Learning, Mathematics - Optimization and Control
More Details: In many neural networks, different values of the parameters may result in the same loss value. Parameter space symmetries are loss-invariant transformations that change the model parameters. Teleportation applies such transformations to accelerate optimization. However, the exact mechanism behind this algorithm's success is not well understood. In this paper, we show that teleportation not only speeds up optimization in the short-term, but gives overall faster time to convergence. Additionally, teleporting to minima with different curvatures improves generalization, which suggests a connection between the curvature of the minimum and generalization ability. Finally, we show that integrating teleportation into a wide range of optimization algorithms and optimization-based meta-learning improves convergence. Our results showcase the versatility of teleportation and demonstrate the potential of incorporating symmetry in optimization.
Comment: 28 pages, 13 figures, ICLR 2024
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2305.13404
Accession Number: edsarx.2305.13404
Database: arXiv
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://arxiv.org/abs/2305.13404
    Name: EDS - Arxiv
    Category: fullText
    Text: View this record from Arxiv
    MouseOverText: View this record from Arxiv
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsarx&genre=article&issn=&ISBN=&volume=&issue=&date=20230522&spage=&pages=&title=Improving Convergence and Generalization Using Parameter Symmetries&atitle=Improving%20Convergence%20and%20Generalization%20Using%20Parameter%20Symmetries&aulast=Zhao%2C%20Bo&id=DOI:
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
Header DbId: edsarx
DbLabel: arXiv
An: edsarx.2305.13404
RelevancyScore: 1057
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 1057.33166503906
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Improving Convergence and Generalization Using Parameter Symmetries
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Zhao%2C+Bo%22">Zhao, Bo</searchLink><br /><searchLink fieldCode="AR" term="%22Gower%2C+Robert+M%2E%22">Gower, Robert M.</searchLink><br /><searchLink fieldCode="AR" term="%22Walters%2C+Robin%22">Walters, Robin</searchLink><br /><searchLink fieldCode="AR" term="%22Yu%2C+Rose%22">Yu, Rose</searchLink>
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2023
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Computer Science<br />Mathematics
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Computer+Science+-+Machine+Learning%22">Computer Science - Machine Learning</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics+-+Optimization+and+Control%22">Mathematics - Optimization and Control</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: In many neural networks, different values of the parameters may result in the same loss value. Parameter space symmetries are loss-invariant transformations that change the model parameters. Teleportation applies such transformations to accelerate optimization. However, the exact mechanism behind this algorithm's success is not well understood. In this paper, we show that teleportation not only speeds up optimization in the short-term, but gives overall faster time to convergence. Additionally, teleporting to minima with different curvatures improves generalization, which suggests a connection between the curvature of the minimum and generalization ability. Finally, we show that integrating teleportation into a wide range of optimization algorithms and optimization-based meta-learning improves convergence. Our results showcase the versatility of teleportation and demonstrate the potential of incorporating symmetry in optimization.<br />Comment: 28 pages, 13 figures, ICLR 2024
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Working Paper
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2305.13404" linkWindow="_blank">http://arxiv.org/abs/2305.13404</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsarx.2305.13404
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2305.13404
RecordInfo BibRecord:
  BibEntity:
    Subjects:
      – SubjectFull: Computer Science - Machine Learning
        Type: general
      – SubjectFull: Mathematics - Optimization and Control
        Type: general
    Titles:
      – TitleFull: Improving Convergence and Generalization Using Parameter Symmetries
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Zhao, Bo
      – PersonEntity:
          Name:
            NameFull: Gower, Robert M.
      – PersonEntity:
          Name:
            NameFull: Walters, Robin
      – PersonEntity:
          Name:
            NameFull: Yu, Rose
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 22
              M: 05
              Type: published
              Y: 2023
ResultId 1