Brunn-Minkowski inequality for $\theta$-convolution bodies via Ball's bodies

Bibliographic Details
Title: Brunn-Minkowski inequality for $\theta$-convolution bodies via Ball's bodies
Authors: Alonso-Gutiérrez, David, Goñi, Javier Martín
Publication Year: 2022
Collection: Mathematics
Subject Terms: Mathematics - Metric Geometry, 52A40
More Details: We consider the problem of finding the best function $\varphi_n:[0,1]\to\mathbb{R}$ such that for any pair of convex bodies $K,L\in\mathbb{R}^n$ the following Brunn-Minkowski type inequality holds $$ |K+_\theta L|^\frac{1}{n}\geq\varphi_n(\theta)(|K|^\frac{1}{n}+|L|^\frac{1}{n}), $$ where $K+_\theta L$ is the $\theta$-convolution body of $K$ and $L$. We prove a sharp inclusion of the family of Ball's bodies of an $\alpha$-concave function in its super-level sets in order to provide the best possible function in the range $\left(\frac{3}{4}\right)^n\leq\theta\leq1$, characterizing the equality cases.
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2211.17069
Accession Number: edsarx.2211.17069
Database: arXiv
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://arxiv.org/abs/2211.17069
    Name: EDS - Arxiv
    Category: fullText
    Text: View this record from Arxiv
    MouseOverText: View this record from Arxiv
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsarx&genre=article&issn=&ISBN=&volume=&issue=&date=20221130&spage=&pages=&title=Brunn-Minkowski inequality for $\theta$-convolution bodies via Ball's bodies&atitle=Brunn-Minkowski%20inequality%20for%20%24%5Ctheta%24-convolution%20bodies%20via%20Ball%27s%20bodies&aulast=Alonso-Guti%C3%A9rrez%2C%20David&id=DOI:
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
Header DbId: edsarx
DbLabel: arXiv
An: edsarx.2211.17069
RelevancyScore: 1037
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 1037.18481445313
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Brunn-Minkowski inequality for $\theta$-convolution bodies via Ball's bodies
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Alonso-Gutiérrez%2C+David%22">Alonso-Gutiérrez, David</searchLink><br /><searchLink fieldCode="AR" term="%22Goñi%2C+Javier+Martín%22">Goñi, Javier Martín</searchLink>
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2022
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Mathematics
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Mathematics+-+Metric+Geometry%22">Mathematics - Metric Geometry</searchLink><br /><searchLink fieldCode="DE" term="%2252A40%22">52A40</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: We consider the problem of finding the best function $\varphi_n:[0,1]\to\mathbb{R}$ such that for any pair of convex bodies $K,L\in\mathbb{R}^n$ the following Brunn-Minkowski type inequality holds $$ |K+_\theta L|^\frac{1}{n}\geq\varphi_n(\theta)(|K|^\frac{1}{n}+|L|^\frac{1}{n}), $$ where $K+_\theta L$ is the $\theta$-convolution body of $K$ and $L$. We prove a sharp inclusion of the family of Ball's bodies of an $\alpha$-concave function in its super-level sets in order to provide the best possible function in the range $\left(\frac{3}{4}\right)^n\leq\theta\leq1$, characterizing the equality cases.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Working Paper
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2211.17069" linkWindow="_blank">http://arxiv.org/abs/2211.17069</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsarx.2211.17069
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2211.17069
RecordInfo BibRecord:
  BibEntity:
    Subjects:
      – SubjectFull: Mathematics - Metric Geometry
        Type: general
      – SubjectFull: 52A40
        Type: general
    Titles:
      – TitleFull: Brunn-Minkowski inequality for $\theta$-convolution bodies via Ball's bodies
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Alonso-Gutiérrez, David
      – PersonEntity:
          Name:
            NameFull: Goñi, Javier Martín
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 30
              M: 11
              Type: published
              Y: 2022
ResultId 1