Restricted mean survival time estimate using covariate adjusted pseudovalue regression to improve precision

Bibliographic Details
Title: Restricted mean survival time estimate using covariate adjusted pseudovalue regression to improve precision
Authors: Li, Yunfan, Ross, Jessica L., Smith, Aaron M., Miller, David P.
Publication Year: 2022
Collection: Statistics
Subject Terms: Statistics - Methodology, Statistics - Applications
More Details: Covariate adjustment is desired by both practitioners and regulators of randomized clinical trials because it improves precision for estimating treatment effects. However, covariate adjustment presents a particular challenge in time-to-event analysis. We propose to apply covariate adjusted pseudovalue regression to estimate between-treatment difference in restricted mean survival times (RMST). Our proposed method incorporates a prognostic covariate to increase precision of treatment effect estimate, maintaining strict type I error control without introducing bias. In addition, the amount of increase in precision can be quantified and taken into account in sample size calculation at the study design stage. Consequently, our proposed method provides the ability to design smaller randomized studies at no expense to statistical power.
Document Type: Working Paper
Access URL: http://arxiv.org/abs/2208.04495
Accession Number: edsarx.2208.04495
Database: arXiv
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://arxiv.org/abs/2208.04495
    Name: EDS - Arxiv
    Category: fullText
    Text: View this record from Arxiv
    MouseOverText: View this record from Arxiv
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsarx&genre=article&issn=&ISBN=&volume=&issue=&date=20220808&spage=&pages=&title=Restricted mean survival time estimate using covariate adjusted pseudovalue regression to improve precision&atitle=Restricted%20mean%20survival%20time%20estimate%20using%20covariate%20adjusted%20pseudovalue%20regression%20to%20improve%20precision&aulast=Li%2C%20Yunfan&id=DOI:
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
Header DbId: edsarx
DbLabel: arXiv
An: edsarx.2208.04495
RelevancyScore: 1037
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 1037.14208984375
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Restricted mean survival time estimate using covariate adjusted pseudovalue regression to improve precision
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Li%2C+Yunfan%22">Li, Yunfan</searchLink><br /><searchLink fieldCode="AR" term="%22Ross%2C+Jessica+L%2E%22">Ross, Jessica L.</searchLink><br /><searchLink fieldCode="AR" term="%22Smith%2C+Aaron+M%2E%22">Smith, Aaron M.</searchLink><br /><searchLink fieldCode="AR" term="%22Miller%2C+David+P%2E%22">Miller, David P.</searchLink>
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2022
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Statistics
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Statistics+-+Methodology%22">Statistics - Methodology</searchLink><br /><searchLink fieldCode="DE" term="%22Statistics+-+Applications%22">Statistics - Applications</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: Covariate adjustment is desired by both practitioners and regulators of randomized clinical trials because it improves precision for estimating treatment effects. However, covariate adjustment presents a particular challenge in time-to-event analysis. We propose to apply covariate adjusted pseudovalue regression to estimate between-treatment difference in restricted mean survival times (RMST). Our proposed method incorporates a prognostic covariate to increase precision of treatment effect estimate, maintaining strict type I error control without introducing bias. In addition, the amount of increase in precision can be quantified and taken into account in sample size calculation at the study design stage. Consequently, our proposed method provides the ability to design smaller randomized studies at no expense to statistical power.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Working Paper
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2208.04495" linkWindow="_blank">http://arxiv.org/abs/2208.04495</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsarx.2208.04495
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2208.04495
RecordInfo BibRecord:
  BibEntity:
    Subjects:
      – SubjectFull: Statistics - Methodology
        Type: general
      – SubjectFull: Statistics - Applications
        Type: general
    Titles:
      – TitleFull: Restricted mean survival time estimate using covariate adjusted pseudovalue regression to improve precision
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Li, Yunfan
      – PersonEntity:
          Name:
            NameFull: Ross, Jessica L.
      – PersonEntity:
          Name:
            NameFull: Smith, Aaron M.
      – PersonEntity:
          Name:
            NameFull: Miller, David P.
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 08
              M: 08
              Type: published
              Y: 2022
ResultId 1