Autoencoders for Semivisible Jet Detection

Bibliographic Details
Title: Autoencoders for Semivisible Jet Detection
Authors: Canelli, Florencia, de Cosa, Annapaola, Pottier, Luc Le, Niedziela, Jeremi, Pedro, Kevin, Pierini, Maurizio
Source: Journal of High Energy Physics volume 2022, Article number: 74 (2022)
Publication Year: 2021
Collection: Computer Science
High Energy Physics - Experiment
High Energy Physics - Phenomenology
Subject Terms: High Energy Physics - Phenomenology, Computer Science - Machine Learning, High Energy Physics - Experiment
More Details: The production of dark matter particles from confining dark sectors may lead to many novel experimental signatures. Depending on the details of the theory, dark quark production in proton-proton collisions could result in semivisible jets of particles: collimated sprays of dark hadrons of which only some are detectable by particle collider experiments. The experimental signature is characterised by the presence of reconstructed missing momentum collinear with the visible components of the jets. This complex topology is sensitive to detector inefficiencies and mis-reconstruction that generate artificial missing momentum. With this work, we propose a signal-agnostic strategy to reject ordinary jets and identify semivisible jets via anomaly detection techniques. A deep neural autoencoder network with jet substructure variables as input proves highly useful for analyzing anomalous jets. The study focuses on the semivisible jet signature; however, the technique can apply to any new physics model that predicts signatures with anomalous jets from non-SM particles.
Comment: 17 pages, 10 figures
Document Type: Working Paper
DOI: 10.1007/JHEP02(2022)074
Access URL: http://arxiv.org/abs/2112.02864
Accession Number: edsarx.2112.02864
Database: arXiv
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://arxiv.org/abs/2112.02864
    Name: EDS - Arxiv
    Category: fullText
    Text: View this record from Arxiv
    MouseOverText: View this record from Arxiv
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsarx&genre=article&issn=&ISBN=&volume=&issue=&date=20211206&spage=&pages=&title=Autoencoders for Semivisible Jet Detection&atitle=Autoencoders%20for%20Semivisible%20Jet%20Detection&aulast=Canelli%2C%20Florencia&id=DOI:10.1007/JHEP02(2022)074
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
Header DbId: edsarx
DbLabel: arXiv
An: edsarx.2112.02864
RelevancyScore: 1022
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 1021.69171142578
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Autoencoders for Semivisible Jet Detection
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Canelli%2C+Florencia%22">Canelli, Florencia</searchLink><br /><searchLink fieldCode="AR" term="%22de+Cosa%2C+Annapaola%22">de Cosa, Annapaola</searchLink><br /><searchLink fieldCode="AR" term="%22Pottier%2C+Luc+Le%22">Pottier, Luc Le</searchLink><br /><searchLink fieldCode="AR" term="%22Niedziela%2C+Jeremi%22">Niedziela, Jeremi</searchLink><br /><searchLink fieldCode="AR" term="%22Pedro%2C+Kevin%22">Pedro, Kevin</searchLink><br /><searchLink fieldCode="AR" term="%22Pierini%2C+Maurizio%22">Pierini, Maurizio</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Journal of High Energy Physics volume 2022, Article number: 74 (2022)
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2021
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Computer Science<br />High Energy Physics - Experiment<br />High Energy Physics - Phenomenology
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22High+Energy+Physics+-+Phenomenology%22">High Energy Physics - Phenomenology</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+Science+-+Machine+Learning%22">Computer Science - Machine Learning</searchLink><br /><searchLink fieldCode="DE" term="%22High+Energy+Physics+-+Experiment%22">High Energy Physics - Experiment</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: The production of dark matter particles from confining dark sectors may lead to many novel experimental signatures. Depending on the details of the theory, dark quark production in proton-proton collisions could result in semivisible jets of particles: collimated sprays of dark hadrons of which only some are detectable by particle collider experiments. The experimental signature is characterised by the presence of reconstructed missing momentum collinear with the visible components of the jets. This complex topology is sensitive to detector inefficiencies and mis-reconstruction that generate artificial missing momentum. With this work, we propose a signal-agnostic strategy to reject ordinary jets and identify semivisible jets via anomaly detection techniques. A deep neural autoencoder network with jet substructure variables as input proves highly useful for analyzing anomalous jets. The study focuses on the semivisible jet signature; however, the technique can apply to any new physics model that predicts signatures with anomalous jets from non-SM particles.<br />Comment: 17 pages, 10 figures
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Working Paper
– Name: DOI
  Label: DOI
  Group: ID
  Data: 10.1007/JHEP02(2022)074
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="http://arxiv.org/abs/2112.02864" linkWindow="_blank">http://arxiv.org/abs/2112.02864</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsarx.2112.02864
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.2112.02864
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1007/JHEP02(2022)074
    Subjects:
      – SubjectFull: High Energy Physics - Phenomenology
        Type: general
      – SubjectFull: Computer Science - Machine Learning
        Type: general
      – SubjectFull: High Energy Physics - Experiment
        Type: general
    Titles:
      – TitleFull: Autoencoders for Semivisible Jet Detection
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Canelli, Florencia
      – PersonEntity:
          Name:
            NameFull: de Cosa, Annapaola
      – PersonEntity:
          Name:
            NameFull: Pottier, Luc Le
      – PersonEntity:
          Name:
            NameFull: Niedziela, Jeremi
      – PersonEntity:
          Name:
            NameFull: Pedro, Kevin
      – PersonEntity:
          Name:
            NameFull: Pierini, Maurizio
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 06
              M: 12
              Type: published
              Y: 2021
ResultId 1