An optimal semiclassical bound on certain commutators
Title: | An optimal semiclassical bound on certain commutators |
---|---|
Authors: | Fournais, Søren, Mikkelsen, Søren |
Publication Year: | 2019 |
Collection: | Mathematics Mathematical Physics |
Subject Terms: | Mathematical Physics |
More Details: | We prove an optimal semiclassical bound on the trace norm of the following commutators $[\boldsymbol{1}_{(-\infty,0]}(H_\hbar),x]$, $[\boldsymbol{1}_{(-\infty,0]}(H_\hbar),-i\hbar\nabla]$ and $[\boldsymbol{1}_{(-\infty,0]}(H_\hbar),e^{itx}]$, where $H_\hbar$ is a Schr\"odinger operator with a semiclassical parameter $\hbar$, $x$ is the position operator and $-i\hbar\nabla$ is the momentum operator. These bounds corresponds to a mean-field version of bounds introduced as an assumption by N. Benedikter, M. Porta and B. Schlein in a study of the mean-field evolution of a fermionic system. |
Document Type: | Working Paper |
Access URL: | http://arxiv.org/abs/1912.08467 |
Accession Number: | edsarx.1912.08467 |
Database: | arXiv |
Be the first to leave a comment!