The Asymptotic Performance of Linear Echo State Neural Networks

Bibliographic Details
Title: The Asymptotic Performance of Linear Echo State Neural Networks
Authors: Couillet, Romain, Wainrib, Gilles, Sevi, Harry, Ali, Hafiz Tiomoko
Publication Year: 2016
Collection: Computer Science
Mathematics
Subject Terms: Computer Science - Learning, Computer Science - Neural and Evolutionary Computing, Mathematics - Probability
More Details: In this article, a study of the mean-square error (MSE) performance of linear echo-state neural networks is performed, both for training and testing tasks. Considering the realistic setting of noise present at the network nodes, we derive deterministic equivalents for the aforementioned MSE in the limit where the number of input data $T$ and network size $n$ both grow large. Specializing then the network connectivity matrix to specific random settings, we further obtain simple formulas that provide new insights on the performance of such networks.
Document Type: Working Paper
Access URL: http://arxiv.org/abs/1603.07866
Accession Number: edsarx.1603.07866
Database: arXiv
FullText Text:
  Availability: 0
CustomLinks:
  – Url: http://arxiv.org/abs/1603.07866
    Name: EDS - Arxiv
    Category: fullText
    Text: View this record from Arxiv
    MouseOverText: View this record from Arxiv
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edsarx&genre=article&issn=&ISBN=&volume=&issue=&date=20160325&spage=&pages=&title=The Asymptotic Performance of Linear Echo State Neural Networks&atitle=The%20Asymptotic%20Performance%20of%20Linear%20Echo%20State%20Neural%20Networks&aulast=Couillet%2C%20Romain&id=DOI:
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
Header DbId: edsarx
DbLabel: arXiv
An: edsarx.1603.07866
RelevancyScore: 954
AccessLevel: 3
PubType: Report
PubTypeId: report
PreciseRelevancyScore: 953.507202148438
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: The Asymptotic Performance of Linear Echo State Neural Networks
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Couillet%2C+Romain%22">Couillet, Romain</searchLink><br /><searchLink fieldCode="AR" term="%22Wainrib%2C+Gilles%22">Wainrib, Gilles</searchLink><br /><searchLink fieldCode="AR" term="%22Sevi%2C+Harry%22">Sevi, Harry</searchLink><br /><searchLink fieldCode="AR" term="%22Ali%2C+Hafiz+Tiomoko%22">Ali, Hafiz Tiomoko</searchLink>
– Name: DatePubCY
  Label: Publication Year
  Group: Date
  Data: 2016
– Name: Subset
  Label: Collection
  Group: HoldingsInfo
  Data: Computer Science<br />Mathematics
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: <searchLink fieldCode="DE" term="%22Computer+Science+-+Learning%22">Computer Science - Learning</searchLink><br /><searchLink fieldCode="DE" term="%22Computer+Science+-+Neural+and+Evolutionary+Computing%22">Computer Science - Neural and Evolutionary Computing</searchLink><br /><searchLink fieldCode="DE" term="%22Mathematics+-+Probability%22">Mathematics - Probability</searchLink>
– Name: Abstract
  Label: Description
  Group: Ab
  Data: In this article, a study of the mean-square error (MSE) performance of linear echo-state neural networks is performed, both for training and testing tasks. Considering the realistic setting of noise present at the network nodes, we derive deterministic equivalents for the aforementioned MSE in the limit where the number of input data $T$ and network size $n$ both grow large. Specializing then the network connectivity matrix to specific random settings, we further obtain simple formulas that provide new insights on the performance of such networks.
– Name: TypeDocument
  Label: Document Type
  Group: TypDoc
  Data: Working Paper
– Name: URL
  Label: Access URL
  Group: URL
  Data: <link linkTarget="URL" linkTerm="http://arxiv.org/abs/1603.07866" linkWindow="_blank">http://arxiv.org/abs/1603.07866</link>
– Name: AN
  Label: Accession Number
  Group: ID
  Data: edsarx.1603.07866
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsarx&AN=edsarx.1603.07866
RecordInfo BibRecord:
  BibEntity:
    Subjects:
      – SubjectFull: Computer Science - Learning
        Type: general
      – SubjectFull: Computer Science - Neural and Evolutionary Computing
        Type: general
      – SubjectFull: Mathematics - Probability
        Type: general
    Titles:
      – TitleFull: The Asymptotic Performance of Linear Echo State Neural Networks
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Couillet, Romain
      – PersonEntity:
          Name:
            NameFull: Wainrib, Gilles
      – PersonEntity:
          Name:
            NameFull: Sevi, Harry
      – PersonEntity:
          Name:
            NameFull: Ali, Hafiz Tiomoko
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 25
              M: 03
              Type: published
              Y: 2016
ResultId 1