1.9-GHz-Band Surface Acoustic Wave Device Using Second Leaky Mode on LiTaO3

Bibliographic Details
Title: 1.9-GHz-Band Surface Acoustic Wave Device Using Second Leaky Mode on LiTaO3
Authors: Yasumi Kobayashi, Yasumi Kobayashi, Naoki Tanaka, Naoki Tanaka, Kuniyuki Matsui, Kuniyuki Matsui, Hiroshi Okano, Hiroshi Okano, Tatsuro Usuki, Tatsuro Usuki, Kenichi Shibata, Kenichi Shibata
Source: Japanese Journal of Applied Physics; May 1996, Vol. 35 Issue: 5 p2987-2987, 1p
Abstract: The propagation characteristics of a new high-phase-velocity leaky surface acoustic wave (SAW) mode, which is called the second leaky mode, in a periodic structure on LiTaO3(90°, 90°, 31°) aere analyzed experimentally. The propagation loss is the lowest when the KH(K=wave number, H=Al electrode thickness) parameter is about 0.5. The higher mode of the second leaky mode is excited when the KHparameter is larger than 0.7. A ladder type band-pass SAW filter utilizing the second leaky mode on LiTaO3was designed and fabricated by applying the analysis results to the periodical structure. The pitch of the electrode fingers is 0.8 µ m. The center frequency of the pass band is 1.938 GHz. The minimum insertion loss is 3.3 dB. The attenuation at the center frequency ±100 MHz is 25 dB. The measured characteristics of this filter can be sufficient for practical mobile communication systems.
Database: Supplemental Index
FullText Links:
  – Type: other
Text:
  Availability: 0
CustomLinks:
  – Url: https://login.libproxy.scu.edu/login?url=http://stacks.iop.org/0021-4922/35/2987
    Name: Institute of Physics
    Category: fullText
    Text: Full Text from the Institute of Physics
    MouseOverText: Full Text from the Institute of Physics
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edo&genre=article&issn=00214922&ISBN=&volume=35&issue=5&date=19960501&spage=2987&pages=2987-2987&title=Japanese Journal of Applied Physics&atitle=1.9-GHz-Band%20Surface%20Acoustic%20Wave%20Device%20Using%20Second%20Leaky%20Mode%20%20%20on%20LiTaO3&aulast=Yasumi%C2%A0Kobayashi%2C%20Yasumi%C2%A0Kobayashi&id=DOI:10.1143/JJAP.35.2987
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
Header DbId: edo
DbLabel: Supplemental Index
An: ejs56129623
RelevancyScore: 694
AccessLevel: 6
PubType: Periodical
PubTypeId: serialPeriodical
PreciseRelevancyScore: 693.93701171875
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: 1.9-GHz-Band Surface Acoustic Wave Device Using Second Leaky Mode on LiTaO3
– Name: Author
  Label: Authors
  Group: Au
  Data: <searchLink fieldCode="AR" term="%22Yasumi Kobayashi%2C+Yasumi Kobayashi%22">Yasumi Kobayashi, Yasumi Kobayashi</searchLink><br /><searchLink fieldCode="AR" term="%22Naoki Tanaka%2C+Naoki Tanaka%22">Naoki Tanaka, Naoki Tanaka</searchLink><br /><searchLink fieldCode="AR" term="%22Kuniyuki Matsui%2C+Kuniyuki Matsui%22">Kuniyuki Matsui, Kuniyuki Matsui</searchLink><br /><searchLink fieldCode="AR" term="%22Hiroshi Okano%2C+Hiroshi Okano%22">Hiroshi Okano, Hiroshi Okano</searchLink><br /><searchLink fieldCode="AR" term="%22Tatsuro Usuki%2C+Tatsuro Usuki%22">Tatsuro Usuki, Tatsuro Usuki</searchLink><br /><searchLink fieldCode="AR" term="%22Kenichi Shibata%2C+Kenichi Shibata%22">Kenichi Shibata, Kenichi Shibata</searchLink>
– Name: TitleSource
  Label: Source
  Group: Src
  Data: Japanese Journal of Applied Physics; May 1996, Vol. 35 Issue: 5 p2987-2987, 1p
– Name: Abstract
  Label: Abstract
  Group: Ab
  Data: The propagation characteristics of a new high-phase-velocity leaky surface acoustic wave (SAW) mode, which is called the second leaky mode, in a periodic structure on LiTaO3(90°, 90°, 31°) aere analyzed experimentally. The propagation loss is the lowest when the KH(K=wave number, H=Al electrode thickness) parameter is about 0.5. The higher mode of the second leaky mode is excited when the KHparameter is larger than 0.7. A ladder type band-pass SAW filter utilizing the second leaky mode on LiTaO3was designed and fabricated by applying the analysis results to the periodical structure. The pitch of the electrode fingers is 0.8 µ m. The center frequency of the pass band is 1.938 GHz. The minimum insertion loss is 3.3 dB. The attenuation at the center frequency ±100 MHz is 25 dB. The measured characteristics of this filter can be sufficient for practical mobile communication systems.
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edo&AN=ejs56129623
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1143/JJAP.35.2987
    Languages:
      – Code: eng
        Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 1
        StartPage: 2987
    Titles:
      – TitleFull: 1.9-GHz-Band Surface Acoustic Wave Device Using Second Leaky Mode on LiTaO3
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Yasumi Kobayashi, Yasumi Kobayashi
      – PersonEntity:
          Name:
            NameFull: Naoki Tanaka, Naoki Tanaka
      – PersonEntity:
          Name:
            NameFull: Kuniyuki Matsui, Kuniyuki Matsui
      – PersonEntity:
          Name:
            NameFull: Hiroshi Okano, Hiroshi Okano
      – PersonEntity:
          Name:
            NameFull: Tatsuro Usuki, Tatsuro Usuki
      – PersonEntity:
          Name:
            NameFull: Kenichi Shibata, Kenichi Shibata
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 01
              M: 05
              Text: May 1996
              Type: published
              Y: 1996
          Identifiers:
            – Type: issn-print
              Value: 00214922
            – Type: issn-print
              Value: 13474065
          Numbering:
            – Type: volume
              Value: 35
            – Type: issue
              Value: 5
          Titles:
            – TitleFull: Japanese Journal of Applied Physics
              Type: main
ResultId 1