Bayesian risk prediction model for colorectal cancer mortality through integration of clinicopathologic and genomic data.

Bibliographic Details
Title: Bayesian risk prediction model for colorectal cancer mortality through integration of clinicopathologic and genomic data.
Authors: Zhao, Melissa, Lau, Mai Chan, Haruki, Koichiro, Väyrynen, Juha P., Gurjao, Carino, Väyrynen, Sara A., Dias Costa, Andressa, Borowsky, Jennifer, Fujiyoshi, Kenji, Arima, Kota, Hamada, Tsuyoshi, Lennerz, Jochen K., Fuchs, Charles S., Nishihara, Reiko, Chan, Andrew T., Ng, Kimmie, Zhang, Xuehong, Meyerhardt, Jeffrey A., Song, Mingyang, Wang, Molin
Source: NPJ Precision Oncology; 6/10/2023, Vol. 7 Issue 1, p1-13, 13p
Subject Terms: COLORECTAL cancer, CANCER-related mortality, PREDICTION models, STATISTICAL learning, CLINICAL pathology
Abstract: Routine tumor-node-metastasis (TNM) staging of colorectal cancer is imperfect in predicting survival due to tumor pathobiological heterogeneity and imprecise assessment of tumor spread. We leveraged Bayesian additive regression trees (BART), a statistical learning technique, to comprehensively analyze patient-specific tumor characteristics for the improvement of prognostic prediction. Of 75 clinicopathologic, immune, microbial, and genomic variables in 815 stage II–III patients within two U.S.-wide prospective cohort studies, the BART risk model identified seven stable survival predictors. Risk stratifications (low risk, intermediate risk, and high risk) based on model-predicted survival were statistically significant (hazard ratios 0.19–0.45, vs. higher risk; P < 0.0001) and could be externally validated using The Cancer Genome Atlas (TCGA) data (P = 0.0004). BART demonstrated model flexibility, interpretability, and comparable or superior performance to other machine-learning models. Integrated bioinformatic analyses using BART with tumor-specific factors can robustly stratify colorectal cancer patients into prognostic groups and be readily applied to clinical oncology practice. [ABSTRACT FROM AUTHOR]
Copyright of NPJ Precision Oncology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
FullText Links:
  – Type: other
Text:
  Availability: 0
CustomLinks:
  – Url: https://resolver.ebsco.com/c/xy5jbn/result?sid=EBSCO:edb&genre=article&issn=2397768X&ISBN=&volume=7&issue=1&date=20230610&spage=1&pages=1-13&title=NPJ Precision Oncology&atitle=Bayesian%20risk%20prediction%20model%20for%20colorectal%20cancer%20mortality%20through%20integration%20of%20clinicopathologic%20and%20genomic%20data.&aulast=Zhao%2C%20Melissa&id=DOI:10.1038/s41698-023-00406-8
    Name: Full Text Finder (for New FTF UI) (s8985755)
    Category: fullText
    Text: Find It @ SCU Libraries
    MouseOverText: Find It @ SCU Libraries
Header DbId: edb
DbLabel: Complementary Index
An: 164224816
RelevancyScore: 973
AccessLevel: 6
PubType: Academic Journal
PubTypeId: academicJournal
PreciseRelevancyScore: 973.297058105469
IllustrationInfo
Items – Name: Title
  Label: Title
  Group: Ti
  Data: Bayesian risk prediction model for colorectal cancer mortality through integration of clinicopathologic and genomic data.
– Name: Author
  Label: Authors
  Group: Au
  Data: &lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Zhao%2C+Melissa%22&quot;&gt;Zhao, Melissa&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Lau%2C+Mai+Chan%22&quot;&gt;Lau, Mai Chan&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Haruki%2C+Koichiro%22&quot;&gt;Haruki, Koichiro&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22V&#228;yrynen%2C+Juha+P%2E%22&quot;&gt;V&#228;yrynen, Juha P.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Gurjao%2C+Carino%22&quot;&gt;Gurjao, Carino&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22V&#228;yrynen%2C+Sara+A%2E%22&quot;&gt;V&#228;yrynen, Sara A.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Dias+Costa%2C+Andressa%22&quot;&gt;Dias Costa, Andressa&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Borowsky%2C+Jennifer%22&quot;&gt;Borowsky, Jennifer&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Fujiyoshi%2C+Kenji%22&quot;&gt;Fujiyoshi, Kenji&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Arima%2C+Kota%22&quot;&gt;Arima, Kota&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Hamada%2C+Tsuyoshi%22&quot;&gt;Hamada, Tsuyoshi&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Lennerz%2C+Jochen+K%2E%22&quot;&gt;Lennerz, Jochen K.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Fuchs%2C+Charles+S%2E%22&quot;&gt;Fuchs, Charles S.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Nishihara%2C+Reiko%22&quot;&gt;Nishihara, Reiko&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Chan%2C+Andrew+T%2E%22&quot;&gt;Chan, Andrew T.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Ng%2C+Kimmie%22&quot;&gt;Ng, Kimmie&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Zhang%2C+Xuehong%22&quot;&gt;Zhang, Xuehong&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Meyerhardt%2C+Jeffrey+A%2E%22&quot;&gt;Meyerhardt, Jeffrey A.&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Song%2C+Mingyang%22&quot;&gt;Song, Mingyang&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;AR&quot; term=&quot;%22Wang%2C+Molin%22&quot;&gt;Wang, Molin&lt;/searchLink&gt;
– Name: TitleSource
  Label: Source
  Group: Src
  Data: NPJ Precision Oncology; 6/10/2023, Vol. 7 Issue 1, p1-13, 13p
– Name: Subject
  Label: Subject Terms
  Group: Su
  Data: &lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22COLORECTAL+cancer%22&quot;&gt;COLORECTAL cancer&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22CANCER-related+mortality%22&quot;&gt;CANCER-related mortality&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22PREDICTION+models%22&quot;&gt;PREDICTION models&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22STATISTICAL+learning%22&quot;&gt;STATISTICAL learning&lt;/searchLink&gt;&lt;br /&gt;&lt;searchLink fieldCode=&quot;DE&quot; term=&quot;%22CLINICAL+pathology%22&quot;&gt;CLINICAL pathology&lt;/searchLink&gt;
– Name: Abstract
  Label: Abstract
  Group: Ab
  Data: Routine tumor-node-metastasis (TNM) staging of colorectal cancer is imperfect in predicting survival due to tumor pathobiological heterogeneity and imprecise assessment of tumor spread. We leveraged Bayesian additive regression trees (BART), a statistical learning technique, to comprehensively analyze patient-specific tumor characteristics for the improvement of prognostic prediction. Of 75 clinicopathologic, immune, microbial, and genomic variables in 815 stage II–III patients within two U.S.-wide prospective cohort studies, the BART risk model identified seven stable survival predictors. Risk stratifications (low risk, intermediate risk, and high risk) based on model-predicted survival were statistically significant (hazard ratios 0.19–0.45, vs. higher risk; P &lt; 0.0001) and could be externally validated using The Cancer Genome Atlas (TCGA) data (P = 0.0004). BART demonstrated model flexibility, interpretability, and comparable or superior performance to other machine-learning models. Integrated bioinformatic analyses using BART with tumor-specific factors can robustly stratify colorectal cancer patients into prognostic groups and be readily applied to clinical oncology practice. [ABSTRACT FROM AUTHOR]
– Name: Abstract
  Label:
  Group: Ab
  Data: &lt;i&gt;Copyright of NPJ Precision Oncology is the property of Springer Nature and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder&#39;s express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract.&lt;/i&gt; (Copyright applies to all Abstracts.)
PLink https://login.libproxy.scu.edu/login?url=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edb&AN=164224816
RecordInfo BibRecord:
  BibEntity:
    Identifiers:
      – Type: doi
        Value: 10.1038/s41698-023-00406-8
    Languages:
      – Code: eng
        Text: English
    PhysicalDescription:
      Pagination:
        PageCount: 13
        StartPage: 1
    Subjects:
      – SubjectFull: COLORECTAL cancer
        Type: general
      – SubjectFull: CANCER-related mortality
        Type: general
      – SubjectFull: PREDICTION models
        Type: general
      – SubjectFull: STATISTICAL learning
        Type: general
      – SubjectFull: CLINICAL pathology
        Type: general
    Titles:
      – TitleFull: Bayesian risk prediction model for colorectal cancer mortality through integration of clinicopathologic and genomic data.
        Type: main
  BibRelationships:
    HasContributorRelationships:
      – PersonEntity:
          Name:
            NameFull: Zhao, Melissa
      – PersonEntity:
          Name:
            NameFull: Lau, Mai Chan
      – PersonEntity:
          Name:
            NameFull: Haruki, Koichiro
      – PersonEntity:
          Name:
            NameFull: Väyrynen, Juha P.
      – PersonEntity:
          Name:
            NameFull: Gurjao, Carino
      – PersonEntity:
          Name:
            NameFull: Väyrynen, Sara A.
      – PersonEntity:
          Name:
            NameFull: Dias Costa, Andressa
      – PersonEntity:
          Name:
            NameFull: Borowsky, Jennifer
      – PersonEntity:
          Name:
            NameFull: Fujiyoshi, Kenji
      – PersonEntity:
          Name:
            NameFull: Arima, Kota
      – PersonEntity:
          Name:
            NameFull: Hamada, Tsuyoshi
      – PersonEntity:
          Name:
            NameFull: Lennerz, Jochen K.
      – PersonEntity:
          Name:
            NameFull: Fuchs, Charles S.
      – PersonEntity:
          Name:
            NameFull: Nishihara, Reiko
      – PersonEntity:
          Name:
            NameFull: Chan, Andrew T.
      – PersonEntity:
          Name:
            NameFull: Ng, Kimmie
      – PersonEntity:
          Name:
            NameFull: Zhang, Xuehong
      – PersonEntity:
          Name:
            NameFull: Meyerhardt, Jeffrey A.
      – PersonEntity:
          Name:
            NameFull: Song, Mingyang
      – PersonEntity:
          Name:
            NameFull: Wang, Molin
    IsPartOfRelationships:
      – BibEntity:
          Dates:
            – D: 10
              M: 06
              Text: 6/10/2023
              Type: published
              Y: 2023
          Identifiers:
            – Type: issn-print
              Value: 2397768X
          Numbering:
            – Type: volume
              Value: 7
            – Type: issue
              Value: 1
          Titles:
            – TitleFull: NPJ Precision Oncology
              Type: main
ResultId 1