Optimization of a solid-state electron spin qubit using gate set tomography.

Bibliographic Details
Title: Optimization of a solid-state electron spin qubit using gate set tomography.
Authors: Juan P Dehollain, Juha T Muhonen, Robin Blume-Kohout, Kenneth M Rudinger, John King Gamble, Erik Nielsen, Arne Laucht, Stephanie Simmons, Rachpon Kalra, Andrew S Dzurak, Andrea Morello
Source: New Journal of Physics; Oct2016, Vol. 18 Issue 10, p1-1, 1p
Subject Terms: SPINTRONICS, ELECTRON spin, MAGNETIC equivalence, CROSS-sectional imaging, SPIN-polarized currents
Abstract: State of the art qubit systems are reaching the gate fidelities required for scalable quantum computation architectures. Further improvements in the fidelity of quantum gates demands characterization and benchmarking protocols that are efficient, reliable and extremely accurate. Ideally, a benchmarking protocol should also provide information on how to rectify residual errors. Gate set tomography (GST) is one such protocol designed to give detailed characterization of as-built qubits. We implemented GST on a high-fidelity electron-spin qubit confined by a single 31P atom in 28Si. The results reveal systematic errors that a randomized benchmarking analysis could measure but not identify, whereas GST indicated the need for improved calibration of the length of the control pulses. After introducing this modification, we measured a new benchmark average gate fidelity of , an improvement on the previous value of . Furthermore, GST revealed high levels of non-Markovian noise in the system, which will need to be understood and addressed when the qubit is used within a fault-tolerant quantum computation scheme. [ABSTRACT FROM AUTHOR]
Copyright of New Journal of Physics is the property of IOP Publishing and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This abstract may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full abstract. (Copyright applies to all Abstracts.)
Database: Complementary Index
More Details
ISSN:13672630
DOI:10.1088/1367-2630/18/10/103018
Published in:New Journal of Physics
Language:English